373,736 research outputs found

    Establishing a relation between mass and spin of stellar mass black holes

    Full text link
    Stellar mass black holes (SMBHs), forming by the core collapse of very massive, rapidly rotating stars, are expected to exhibit a high density accretion disk around them developed from the spinning mantle of the collapsing star. A wide class of such disks, due to their high density and temperature, are effective emitters of neutrinos and hence called neutrino cooled disks. Tracking the physics relating the observed (neutrino) luminosity to the mass, spin of black holes (BHs) and the accretion rate (M_dot) of such disks, here we establish a correlation between the spin and mass of SMBHs at their formation stage. Our work shows that spinning BHs are more massive than non-spinning BHs for a given M_dot. However, slowly spinning BHs can turn out to be more massive than spinning BHs if M_dot at their formation stage was higher compared to faster spinning BHs.Comment: 7 pages including 3 figures and supplementary information; accepted for publication in Physical Review Letter

    From spinning to non-spinning cosmic string spacetimes

    Get PDF
    We analyse the properties of a fluid generating a spinning cosmic string spacetime with flat limiting cases corresponding to a constant angular momentum in the infinite past and static configuration in the infinite future. The spontaneous loss of angular momentum of a spinning cosmic string due to particle emission is discussed. The rate of particle production between the spinning and non-spinning cosmic string spacetimes is calculated.Comment: 11 pages, 1 figure, LaTeX To appear in Class. Quantum Gra

    Boost-rotation symmetric vacuum spacetimes with spinning sources

    Get PDF
    Boost-rotation symmetric vacuum spacetimes with spinning sources which correspond to gravitational field of uniformly accelerated spinning "particles" are studied. Regularity conditions and asymptotic properties are analyzed. News functions are derived by transforming the general spinning boost-rotation symmetric vacuum metric to Bondi-Sachs coordinates.Comment: REVTeX 4, 9 page

    Integrally skinned polysulfone hollow fiber membranes for pervaporation

    Get PDF
    From polysulfone as polymer, integrally skinned hollow fiber membranes with a defect-free top layer have been spun. The spinning process described here differs from the traditional dry-wet spinning process where the fiber enters the coagulation bath after passing a certain air gap. In the present process, a specially designed tripple orifice spinneret has been used that allows spinning without contact with the air. This spinneret makes it possible to use two different nonsolvents subsequently. During the contact time with the first nonsolvent, the polymer concentration in the top layer is enhanced, after which the second coagulation bath causes further phase separation and solidification of the ultimate hollow fiber membrane. Top layers of ± 1 m have been obtained, supported by a porous sublayer. The effect of spinning parameters that might influence the membrane structure and, therefore, the membrane properties, are studied by scanning electron microscopy and pervaporation experiments, using a mixture of 80 wt % acetic acid and 20 wt % water at a temperature of 70°C. Higher fluxes as a result of a lower resistance in the substructure could be obtained by adding glycerol to the spinning dope, by decreasing the polymer concentration, and by adding a certain amount of solvent to the bore liquid. Other parameters studied are the type of the solvent in the spinning dope and the type of the first nonsolvent

    Innermost stable circular orbit of spinning particle in charged spinning black hole background

    Full text link
    In this paper we investigate the innermost stable circular orbit (ISCO) for a classical spinning test particle in the background of Kerr-Newman black hole. It is shown that the orbit of the spinning particle is related to the spin of the test particle. The motion of the spinning test particle will be superluminal if its spin is too large. We give an additional condition by considering the superluminal constraint for the ISCO in the black hole backgrounds. We obtain numerically the relations between the ISCO and the properties of the black holes and the test particle. It is found that the radius of the ISCO for a spinning test particle is smaller than that of a non-spinning test particle in the black hole backgrounds.Comment: 9 pages, 9 figure

    Ray trajectories for a spinning cosmic string and a manifestation of self-cloaking

    Full text link
    A study of ray trajectories was undertaken for the Tamm medium which represents the spacetime of a cosmic spinning string, under the geometric-optics approximation. Our numerical studies revealed that: (i) rays never cross the string's boundary; (ii) the Tamm medium supports evanescent waves in regions of phase space that correspond to those regions of the string's spacetime which could support closed timelike curves; and (iii) a spinning string can be slightly visible while a non-spinning string is almost perfectly invisible

    Spinning Dust Emission: Effects of irregular grain shape, transient heating and comparison with WMAP results

    Full text link
    Planck is expected to answer crucial questions on the early Universe, but it also provides further understanding on anomalous microwave emission. Electric dipole emission from spinning dust grains continues to be the favored interpretation of anomalous microwave emission. In this paper, we present a method to calculate the rotational emission from small grains of irregular shape with moments of inertia I1>I2>I3I_{1}> I_{2}> I_{3}. We show that a torque-free rotating irregular grain with a given angular momentum radiates at multiple frequency modes. The resulting spinning dust spectrum has peak frequency and emissivity increasing with the degree of grain shape irregularity, which is defined by I1:I2:I3I_{1}:I_{2}:I_{3}. We discuss how the orientation of dipole moment \bmu in body coordinates affects the spinning dust spectrum for different regimes of internal thermal fluctuations. We show that the spinning dust emissivity for the case of strong thermal fluctuations is less sensitive to the orientation of \bmu than in the case of weak thermal fluctuations. We calculate spinning dust spectra for a range of gas density and dipole moment. The effect of compressible turbulence on spinning dust emission intensity is investigated. We show that the emission intensity in a turbulent medium increases by a factor from 1.2-1.4 relative to that in a uniform medium, as sonic Mach number MsM_{s} increases from 2-7. Finally, spinning dust parameters are constrained by fitting our improved model to five-year {\it Wilkinson Microwave Anisotropy Probe} cross-correlation foreground spectra, for both the Hα\alpha-correlated and 100 μ\mum-correlated emission spectra.Comment: 24 pages, 17 figures, relation to molecular rotation spectra added, accepted by Astrophysical Journa

    Spinning jets

    Get PDF
    A fluid jet with a finite angular velocity is subject to centripetal forces in addition to surface tension forces. At fixed angular momentum, centripetal forces become large when the radius of the jet goes to zero. We study the possible importance of this observation for the pinching of a jet within a slender jet model. A linear stability analysis shows the model to break down at low viscosities. Numerical simulations indicate that angular momentum is expelled from the pinch region so fast that it becomes asymptotically irrelevant in the limit of the neck radius going to zero
    corecore