1,069,155 research outputs found
The neural correlates of speech motor sequence learning
Speech is perhaps the most sophisticated example of a species-wide movement capability in the animal kingdom, requiring split-second sequencing of approximately 100 muscles in the respiratory, laryngeal, and oral movement systems. Despite the unique role speech plays in human interaction and the debilitating impact of its disruption, little is known about the neural mechanisms underlying speech motor learning. Here, we studied the behavioral and neural correlates of learning new speech motor sequences. Participants repeatedly produced novel, meaningless syllables comprising illegal consonant clusters (e.g., GVAZF) over 2 days of practice. Following practice, participants produced the sequences with fewer errors and shorter durations, indicative of motor learning. Using fMRI, we compared brain activity during production of the learned illegal sequences and novel illegal sequences. Greater activity was noted during production of novel sequences in brain regions linked to non-speech motor sequence learning, including the BG and pre-SMA. Activity during novel sequence production was also greater in brain regions associated with learning and maintaining speech motor programs, including lateral premotor cortex, frontal operculum, and posterior superior temporal cortex. Measures of learning success correlated positively with activity in left frontal operculum and white matter integrity under left posterior superior temporal sulcus. These findings indicate speech motor sequence learning relies not only on brain areas involved generally in motor sequencing learning but also those associated with feedback-based speech motor learning. Furthermore, learning success is modulated by the integrity of structural connectivity between these motor and sensory brain regions.R01 DC007683 - NIDCD NIH HHS; R01DC007683 - NIDCD NIH HH
Transcranial alternating current stimulation in the theta band but not in the delta band modulates the comprehension of naturalistic speech in noise
© 2020 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).Auditory cortical activity entrains to speech rhythms and has been proposed as a mechanism for online speech processing. In particular, neural activity in the theta frequency band (4–8 Hz) tracks the onset of syllables which may aid the parsing of a speech stream. Similarly, cortical activity in the delta band (1–4 Hz) entrains to the onset of words in natural speech and has been found to encode both syntactic as well as semantic information. Such neural entrainment to speech rhythms is not merely an epiphenomenon of other neural processes, but plays a functional role in speech processing: modulating the neural entrainment through transcranial alternating current stimulation influences the speech-related neural activity and modulates the comprehension of degraded speech. However, the distinct functional contributions of the delta- and of the theta-band entrainment to the modulation of speech comprehension have not yet been investigated. Here we use transcranial alternating current stimulation with waveforms derived from the speech envelope and filtered in the delta and theta frequency bands to alter cortical entrainment in both bands separately. We find that transcranial alternating current stimulation in the theta band but not in the delta band impacts speech comprehension. Moreover, we find that transcranial alternating current stimulation with the theta-band portion of the speech envelope can improve speech-in-noise comprehension beyond sham stimulation. Our results show a distinct contribution of the theta- but not of the delta-band stimulation to the modulation of speech comprehension. In addition, our findings open up a potential avenue of enhancing the comprehension of speech in noise.Peer reviewe
A computer model of auditory efferent suppression: Implications for the recognition of speech in noise
The neural mechanisms underlying the ability of human listeners to recognize speech in the presence of background noise are still imperfectly understood. However, there is mounting evidence that the medial olivocochlear system plays an important role, via efferents that exert a suppressive effect on the response of the basilar membrane. The current paper presents a computer modeling study that investigates the possible role of this activity on speech intelligibility in noise. A model of auditory efferent processing [ Ferry, R. T., and Meddis, R. (2007). J. Acoust. Soc. Am. 122, 3519?3526 ] is used to provide acoustic features for a statistical automatic speech recognition system, thus allowing the effects of efferent activity on speech intelligibility to be quantified. Performance of the ?basic? model (without efferent activity) on a connected digit recognition task is good when the speech is uncorrupted by noise but falls when noise is present. However, recognition performance is much improved when efferent activity is applied. Furthermore, optimal performance is obtained when the amount of efferent activity is proportional to the noise level. The results obtained are consistent with the suggestion that efferent suppression causes a ?release from adaptation? in the auditory-nerve response to noisy speech, which enhances its intelligibility
An EMG study of the lip muscles during covert auditory verbal hallucinations in schizophrenia
Purpose: Auditory verbal hallucinations (AVHs) are speech perceptions in the
absence of a external stimulation. An influential theoretical account of AVHs
in schizophrenia claims that a deficit in inner speech monitoring would cause
the verbal thoughts of the patient to be perceived as external voices. The
account is based on a predictive control model, in which verbal self-monitoring
is implemented. The aim of this study was to examine lip muscle activity during
AVHs in schizophrenia patients, in order to check whether inner speech
occurred. Methods: Lip muscle activity was recorded during covert AVHs (without
articulation) and rest. Surface electromyography (EMG) was used on eleven
schizophrenia patients. Results: Our results show an increase in EMG activity
in the orbicularis oris inferior muscle, during covert AVHs relative to rest.
This increase is not due to general muscular tension since there was no
increase of muscular activity in the forearm muscle. Conclusion: This evidence
that AVHs might be self-generated inner speech is discussed in the framework of
a predictive control model. Further work is needed to better describe how the
inner speech monitoring dysfunction occurs and how inner speech is controlled
and monitored. This will help better understanding how AVHs occur
Multisensory Integration Sites Identified by Perception of Spatial Wavelet Filtered Visual Speech Gesture Information
Perception of speech is improved when presentation of the audio signal is accompanied by concordant visual speech gesture information. This enhancement is most prevalent when the audio signal is degraded. One potential means by which the brain affords perceptual enhancement is thought to be through the integration of concordant information from multiple sensory channels in a common site of convergence, multisensory integration (MSI) sites. Some studies have identified potential sites in the superior temporal gyrus/sulcus (STG/S) that are responsive to multisensory information from the auditory speech signal and visual speech movement. One limitation of these studies is that they do not control for activity resulting from attentional modulation cued by such things as visual information signaling the onsets and offsets of the acoustic speech signal, as well as activity resulting from MSI of properties of the auditory speech signal with aspects of gross visual motion that are not specific to place of articulation information. This fMRI experiment uses spatial wavelet bandpass filtered Japanese sentences presented with background multispeaker audio noise to discern brain activity reflecting MSI induced by auditory and visual correspondence of place of articulation information that controls for activity resulting from the above-mentioned factors. The experiment consists of a low-frequency (LF) filtered condition containing gross visual motion of the lips, jaw, and head without specific place of articulation information, a midfrequency (MF) filtered condition containing place of articulation information, and an unfiltered (UF) condition. Sites of MSI selectively induced by auditory and visual correspondence of place of articulation information were determined by the presence of activity for both the MF and UF conditions relative to the LF condition. Based on these criteria, sites of MSI were found predominantly in the left middle temporal gyrus (MTG), and the left STG/S (including the auditory cortex). By controlling for additional factors that could also induce greater activity resulting from visual motion information, this study identifies potential MSI sites that we believe are involved with improved speech perception intelligibility
Echoes of the spoken past: how auditory cortex hears context during speech perception.
What do we hear when someone speaks and what does auditory cortex (AC) do with that sound? Given how meaningful speech is, it might be hypothesized that AC is most active when other people talk so that their productions get decoded. Here, neuroimaging meta-analyses show the opposite: AC is least active and sometimes deactivated when participants listened to meaningful speech compared to less meaningful sounds. Results are explained by an active hypothesis-and-test mechanism where speech production (SP) regions are neurally re-used to predict auditory objects associated with available context. By this model, more AC activity for less meaningful sounds occurs because predictions are less successful from context, requiring further hypotheses be tested. This also explains the large overlap of AC co-activity for less meaningful sounds with meta-analyses of SP. An experiment showed a similar pattern of results for non-verbal context. Specifically, words produced less activity in AC and SP regions when preceded by co-speech gestures that visually described those words compared to those words without gestures. Results collectively suggest that what we 'hear' during real-world speech perception may come more from the brain than our ears and that the function of AC is to confirm or deny internal predictions about the identity of sounds
Articulating: the neural mechanisms of speech production
Speech production is a highly complex sensorimotor task involving tightly coordinated processing across large expanses of the cerebral cortex. Historically, the study of the neural underpinnings of speech suffered from the lack of an animal model. The development of non-invasive structural and functional neuroimaging techniques in the late 20th century has dramatically improved our understanding of the speech network. Techniques for measuring regional cerebral blood flow have illuminated the neural regions involved in various aspects of speech, including feedforward and feedback control mechanisms. In parallel, we have designed, experimentally tested, and refined a neural network model detailing the neural computations performed by specific neuroanatomical regions during speech. Computer simulations of the model account for a wide range of experimental findings, including data on articulatory kinematics and brain activity during normal and perturbed speech. Furthermore, the model is being used to investigate a wide range of communication disorders.R01 DC002852 - NIDCD NIH HHS; R01 DC007683 - NIDCD NIH HHS; R01 DC016270 - NIDCD NIH HHSAccepted manuscrip
- …
