11,902 research outputs found

    Analytical Model for the Optical Functions of Indium Gallium Nitride with Application to Thin Film Solar Photovoltaic Cells

    Full text link
    This paper presents the preliminary results of optical characterization using spectroscopic ellipsometry of wurtzite indium gallium nitride (InxGa1-xN) thin films with medium indium content (0.38<x<0.68) that were deposited on silicon dioxide using plasma-enhanced evaporation. A Kramers-Kronig consistent parametric analytical model using Gaussian oscillators to describe the absorption spectra has been developed to extract the real and imaginary components of the dielectric function ({\epsilon}1, {\epsilon}2) of InxGa1-xN films. Scanning electron microscope (SEM) images are presented to examine film microstructure and verify film thicknesses determined from ellipsometry modelling. This fitting procedure, model, and parameters can be employed in the future to extract physical parameters from ellipsometric data from other InxGa1-xN films

    Ion-implantation induced anomalous surface amorphization in silicon

    Get PDF
    Spectroscopic ellipsometry (SE), high-depth-resolution Rutherford backscattering (RBS) and channeling have been used to examine the surface damage formed by room temperature N and B implantation into silicon. For the analysis of the SE data we used the conventional method of assuming appropriate optical models and fitting the model parameters (layer thicknesses and volume fraction of the amorphous silicon component in the layers) by linear regression. The dependence of the thickness of the surface-damaged silicon layer (beneath the native oxide layer) on the implantation parameters was determined: the higher the dose, the thicker the disordered layer at the surface. The mechanism of the surface amorphization process is explained in relation to the ion beam induced layer-by-layer amorphization. The results demonstrate the applicability of Spectroscopic ellipsometry with a proper optical model. RBS, as an independent cross-checking method supported the constructed optical model

    Direct Observationof DegenerateTwo-Photon Absorption and Its Saturation in WS2 and MoS2 Monolayer and Few-Layer Films

    Full text link
    The optical nonlinearity of WS2, MoS2 monolayer and few-layer films was investigated using the Z-scan technique with femtosecond pulses from the visible to the near infrared. The dependence of nonlinear absorption of the WS2 and MoS2 films on layer number and excitation wavelength was studied systematically. WS2 with 1~3 layers exhibits a giant two-photon absorption (TPA) coefficient. Saturation of TPA for WS2 with 1~3 layers and MoS2 with 25~27 layers was observed. The giant nonlinearity of WS2 and MoS2 is attributed to two dimensional confinement, a giant exciton effect and the band edge resonance of TPA
    • …
    corecore