1,093,479 research outputs found

    Spectral Methods from Tensor Networks

    Full text link
    A tensor network is a diagram that specifies a way to "multiply" a collection of tensors together to produce another tensor (or matrix). Many existing algorithms for tensor problems (such as tensor decomposition and tensor PCA), although they are not presented this way, can be viewed as spectral methods on matrices built from simple tensor networks. In this work we leverage the full power of this abstraction to design new algorithms for certain continuous tensor decomposition problems. An important and challenging family of tensor problems comes from orbit recovery, a class of inference problems involving group actions (inspired by applications such as cryo-electron microscopy). Orbit recovery problems over finite groups can often be solved via standard tensor methods. However, for infinite groups, no general algorithms are known. We give a new spectral algorithm based on tensor networks for one such problem: continuous multi-reference alignment over the infinite group SO(2). Our algorithm extends to the more general heterogeneous case.Comment: 30 pages, 8 figure

    Spectral methods for volatility derivatives

    Full text link
    In the first quarter of 2006 Chicago Board Options Exchange (CBOE) introduced, as one of the listed products, options on its implied volatility index (VIX). This created the challenge of developing a pricing framework that can simultaneously handle European options, forward-starts, options on the realized variance and options on the VIX. In this paper we propose a new approach to this problem using spectral methods. We use a regime switching model with jumps and local volatility defined in \cite{FXrev} and calibrate it to the European options on the S&P 500 for a broad range of strikes and maturities. The main idea of this paper is to "lift" (i.e. extend) the generator of the underlying process to keep track of the relevant path information, namely the realized variance. The lifted generator is too large a matrix to be diagonalized numerically. We overcome this difficulty by applying a new semi-analytic algorithm for block-diagonalization. This method enables us to evaluate numerically the joint distribution between the underlying stock price and the realized variance, which in turn gives us a way of pricing consistently European options, general accrued variance payoffs and forward-starting and VIX options.Comment: to appear in Quantitative Financ

    Spectral methods in fluid dynamics

    Get PDF
    Fundamental aspects of spectral methods are introduced. Recent developments in spectral methods are reviewed with an emphasis on collocation techniques. Their applications to both compressible and incompressible flows, to viscous as well as inviscid flows, and also to chemically reacting flows are surveyed. The key role that these methods play in the simulation of stability, transition, and turbulence is brought out. A perspective is provided on some of the obstacles that prohibit a wider use of these methods, and how these obstacles are being overcome

    A Polynomial Spectral Calculus for Analysis of DG Spectral Element Methods

    Full text link
    We introduce a polynomial spectral calculus that follows from the summation by parts property of the Legendre-Gauss-Lobatto quadrature. We use the calculus to simplify the analysis of two multidimensional discontinuous Galerkin spectral element approximations

    Adaptive Spectral Galerkin Methods with Dynamic Marking

    Get PDF
    The convergence and optimality theory of adaptive Galerkin methods is almost exclusively based on the D\"orfler marking. This entails a fixed parameter and leads to a contraction constant bounded below away from zero. For spectral Galerkin methods this is a severe limitation which affects performance. We present a dynamic marking strategy that allows for a super-linear relation between consecutive discretization errors, and show exponential convergence with linear computational complexity whenever the solution belongs to a Gevrey approximation class.Comment: 20 page

    Spectral Methods in PDE

    Full text link
    This is to review some recent progress in PDE. The emphasis is on (energy) supercritical nonlinear Schr\"odinger equations. The methods are applicable to other nonlinear equations.Comment: This is an invited contribution to Milan J. Math., after a talk at the Seminario Matematico e Fisico di Milano. It also contains a new result on critical Sobolev exponent for the cubic nonlinear Schr\"odinger equation on general surfaces. (13pp

    General relativistic neutrino transport using spectral methods

    Full text link
    We present a new code, Lorene's Ghost (for Lorene's gravitational handling of spectral transport) developed to treat the problem of neutrino transport in supernovae with the use of spectral methods. First, we derive the expression for the nonrelativistic Liouville operator in doubly spherical coordinates (r, theta, phi, epsilon, Theta, Phi)$, and further its general relativistic counterpart. We use the 3 + 1 formalism with the conformally flat approximation for the spatial metric, to express the Liouville operator in the Eulerian frame. Our formulation does not use any approximations when dealing with the angular arguments (theta, phi, Theta, Phi), and is fully energy-dependent. This approach is implemented in a spherical shell, using either Chebyshev polynomials or Fourier series as decomposition bases. It is here restricted to simplified collision terms (isoenergetic scattering) and to the case of a static fluid. We finish this paper by presenting test results using basic configurations, including general relativistic ones in the Schwarzschild metric, in order to demonstrate the convergence properties, the conservation of particle number and correct treatment of some general-relativistic effects of our code. The use of spectral methods enables to run our test cases in a six-dimensional setting on a single processor.Comment: match published versio
    corecore