455,911 research outputs found

    Mesh update techniques for free-surface flow solvers using spectral element method

    Get PDF
    This paper presents a novel mesh-update technique for unsteady free-surface Newtonian flows using spectral element method and relying on the arbitrary Lagrangian--Eulerian kinematic description for moving the grid. Selected results showing compatibility of this mesh-update technique with spectral element method are given

    Mixed Mimetic Spectral Element method applied to Darcy's problem

    Full text link
    We present a discretization for Darcy's problem using the recently developed Mimetic Spectral Element Method. The gist lies in the exact discrete representation of integral relations. In this paper, an anisotropic flow through a porous medium is considered and a discretization of a full permeability tensor is presented. The performance of the method is evaluated on standard test problems, converging at the same rate as the best possible approximation

    Spectral gaps of Schrödinger operators with periodic singular potentials

    Get PDF
    By using quasi-derivatives we develop a Fourier method for studying the spectral gaps of one dimensional Schrodinger operators with periodic singular potentials v. Our results reveal a close relationship between smoothness of potentials and spectral gap asymptotics under a priori assumption v is an element of H-loc(-1)(R). They extend and strengthen similar results proved in the classical case v is an element of L-loc(2)(R)

    Spectral/hp element methods: recent developments, applications, and perspectives

    Get PDF
    The spectral/hp element method combines the geometric flexibility of the classical h-type finite element technique with the desirable numerical properties of spectral methods, employing high-degree piecewise polynomial basis functions on coarse finite element-type meshes. The spatial approximation is based upon orthogonal polynomials, such as Legendre or Chebychev polynomials, modified to accommodate C0-continuous expansions. Computationally and theoretically, by increasing the polynomial order p, high-precision solutions and fast convergence can be obtained and, in particular, under certain regularity assumptions an exponential reduction in approximation error between numerical and exact solutions can be achieved. This method has now been applied in many simulation studies of both fundamental and practical engineering flows. This paper briefly describes the formulation of the spectral/hp element method and provides an overview of its application to computational fluid dynamics. In particular, it focuses on the use the spectral/hp element method in transitional flows and ocean engineering. Finally, some of the major challenges to be overcome in order to use the spectral/hp element method in more complex science and engineering applications are discussed
    corecore