31,774 research outputs found
Octonion sparse representation for color and multispectral image processing
A recent trend in color image processing combines the quaternion algebra with dictionary learning methods. This paper aims to present a generalization of the quaternion dictionary learning method by using the octonion algebra. The octonion algebra combined with dictionary learning methods is well suited for representation of multispectral images with up to 7 color channels. Opposed to the classical dictionary learning techniques that treat multispectral images by concatenating spectral bands into a large monochrome image, we treat all the spectral bands simultaneously. Our approach leads to better preservation of color fidelity in true and false color images of the reconstructed multispectral image. To show the potential of the octonion based model, experiments are conducted for image reconstruction and denoising of color images as well as of extensively used Landsat 7 images
Unsupervised spectral sub-feature learning for hyperspectral image classification
Spectral pixel classification is one of the principal techniques used in hyperspectral image (HSI) analysis. In this article, we propose an unsupervised feature learning method for classification of hyperspectral images. The proposed method learns a dictionary of sub-feature basis representations from the spectral domain, which allows effective use of the correlated spectral data. The learned dictionary is then used in encoding convolutional samples from the hyperspectral input pixels to an expanded but sparse feature space. Expanded hyperspectral feature representations enable linear separation between object classes present in an image. To evaluate the proposed method, we performed experiments on several commonly used HSI data sets acquired at different locations and by different sensors. Our experimental results show that the proposed method outperforms other pixel-wise classification methods that make use of unsupervised feature extraction approaches. Additionally, even though our approach does not use any prior knowledge, or labelled training data to learn features, it yields either advantageous, or comparable, results in terms of classification accuracy with respect to recent semi-supervised methods
Further results on dissimilarity spaces for hyperspectral images RF-CBIR
Content-Based Image Retrieval (CBIR) systems are powerful search tools in
image databases that have been little applied to hyperspectral images.
Relevance feedback (RF) is an iterative process that uses machine learning
techniques and user's feedback to improve the CBIR systems performance. We
pursued to expand previous research in hyperspectral CBIR systems built on
dissimilarity functions defined either on spectral and spatial features
extracted by spectral unmixing techniques, or on dictionaries extracted by
dictionary-based compressors. These dissimilarity functions were not suitable
for direct application in common machine learning techniques. We propose to use
a RF general approach based on dissimilarity spaces which is more appropriate
for the application of machine learning algorithms to the hyperspectral
RF-CBIR. We validate the proposed RF method for hyperspectral CBIR systems over
a real hyperspectral dataset.Comment: In Pattern Recognition Letters (2013
Wideband DOA Estimation via Sparse Bayesian Learning over a Khatri-Rao Dictionary
This paper deals with the wideband direction-of-arrival (DOA) estimation by exploiting the multiple measurement vectors (MMV) based sparse Bayesian learning (SBL) framework. First, the array covariance matrices at different frequency bins are focused to the reference frequency by the conventional focusing technique and then transformed into the vector form. Then a matrix called the Khatri-Rao dictionary is constructed by using the Khatri-Rao product and the multiple focused array covariance vectors are set as the new observations. DOA estimation is to find the sparsest representations of the new observations over the Khatri-Rao dictionary via SBL. The performance of the proposed method is compared with other well-known focusing based wideband algorithms and the Cramer-Rao lower bound (CRLB). The results show that it achieves higher resolution and accuracy and can reach the CRLB under relative demanding conditions. Moreover, the method imposes no restriction on the pattern of signal power spectral density and due to the increased number of rows of the dictionary, it can resolve more sources than sensors
- …
