1,332,746 research outputs found
Spatial-temporal data mining procedure: LASR
This paper is concerned with the statistical development of our
spatial-temporal data mining procedure, LASR (pronounced ``laser''). LASR is
the abbreviation for Longitudinal Analysis with Self-Registration of
large--small- data. It was motivated by a study of ``Neuromuscular
Electrical Stimulation'' experiments, where the data are noisy and
heterogeneous, might not align from one session to another, and involve a large
number of multiple comparisons. The three main components of LASR are: (1) data
segmentation for separating heterogeneous data and for distinguishing outliers,
(2) automatic approaches for spatial and temporal data registration, and (3)
statistical smoothing mapping for identifying ``activated'' regions based on
false-discovery-rate controlled -maps and movies. Each of the components is
of interest in its own right. As a statistical ensemble, the idea of LASR is
applicable to other types of spatial-temporal data sets beyond those from the
NMES experiments.Comment: Published at http://dx.doi.org/10.1214/074921706000000707 in the IMS
Lecture Notes--Monograph Series
(http://www.imstat.org/publications/lecnotes.htm) by the Institute of
Mathematical Statistics (http://www.imstat.org
Interpolation of nonstationary high frequency spatial-temporal temperature data
The Atmospheric Radiation Measurement program is a U.S. Department of Energy
project that collects meteorological observations at several locations around
the world in order to study how weather processes affect global climate change.
As one of its initiatives, it operates a set of fixed but irregularly-spaced
monitoring facilities in the Southern Great Plains region of the U.S. We
describe methods for interpolating temperature records from these fixed
facilities to locations at which no observations were made, which can be useful
when values are required on a spatial grid. We interpolate by conditionally
simulating from a fitted nonstationary Gaussian process model that accounts for
the time-varying statistical characteristics of the temperatures, as well as
the dependence on solar radiation. The model is fit by maximizing an
approximate likelihood, and the conditional simulations result in
well-calibrated confidence intervals for the predicted temperatures. We also
describe methods for handling spatial-temporal jumps in the data to interpolate
a slow-moving cold front.Comment: Published in at http://dx.doi.org/10.1214/13-AOAS633 the Annals of
Applied Statistics (http://www.imstat.org/aoas/) by the Institute of
Mathematical Statistics (http://www.imstat.org
Deep Multi-View Spatial-Temporal Network for Taxi Demand Prediction
Taxi demand prediction is an important building block to enabling intelligent
transportation systems in a smart city. An accurate prediction model can help
the city pre-allocate resources to meet travel demand and to reduce empty taxis
on streets which waste energy and worsen the traffic congestion. With the
increasing popularity of taxi requesting services such as Uber and Didi Chuxing
(in China), we are able to collect large-scale taxi demand data continuously.
How to utilize such big data to improve the demand prediction is an interesting
and critical real-world problem. Traditional demand prediction methods mostly
rely on time series forecasting techniques, which fail to model the complex
non-linear spatial and temporal relations. Recent advances in deep learning
have shown superior performance on traditionally challenging tasks such as
image classification by learning the complex features and correlations from
large-scale data. This breakthrough has inspired researchers to explore deep
learning techniques on traffic prediction problems. However, existing methods
on traffic prediction have only considered spatial relation (e.g., using CNN)
or temporal relation (e.g., using LSTM) independently. We propose a Deep
Multi-View Spatial-Temporal Network (DMVST-Net) framework to model both spatial
and temporal relations. Specifically, our proposed model consists of three
views: temporal view (modeling correlations between future demand values with
near time points via LSTM), spatial view (modeling local spatial correlation
via local CNN), and semantic view (modeling correlations among regions sharing
similar temporal patterns). Experiments on large-scale real taxi demand data
demonstrate effectiveness of our approach over state-of-the-art methods.Comment: AAAI 2018 pape
Temporal and Spatial Data Mining with Second-Order Hidden Models
In the frame of designing a knowledge discovery system, we have developed
stochastic models based on high-order hidden Markov models. These models are
capable to map sequences of data into a Markov chain in which the transitions
between the states depend on the \texttt{n} previous states according to the
order of the model. We study the process of achieving information extraction
fromspatial and temporal data by means of an unsupervised classification. We
use therefore a French national database related to the land use of a region,
named Teruti, which describes the land use both in the spatial and temporal
domain. Land-use categories (wheat, corn, forest, ...) are logged every year on
each site regularly spaced in the region. They constitute a temporal sequence
of images in which we look for spatial and temporal dependencies. The temporal
segmentation of the data is done by means of a second-order Hidden Markov Model
(\hmmd) that appears to have very good capabilities to locate stationary
segments, as shown in our previous work in speech recognition. Thespatial
classification is performed by defining a fractal scanning ofthe images with
the help of a Hilbert-Peano curve that introduces atotal order on the sites,
preserving the relation ofneighborhood between the sites. We show that the
\hmmd performs aclassification that is meaningful for the agronomists.Spatial
and temporal classification may be achieved simultaneously by means of a 2
levels \hmmd that measures the \aposteriori probability to map a temporal
sequence of images onto a set of hidden classes
- …
