157,471 research outputs found

    Info-Greedy sequential adaptive compressed sensing

    Full text link
    We present an information-theoretic framework for sequential adaptive compressed sensing, Info-Greedy Sensing, where measurements are chosen to maximize the extracted information conditioned on the previous measurements. We show that the widely used bisection approach is Info-Greedy for a family of kk-sparse signals by connecting compressed sensing and blackbox complexity of sequential query algorithms, and present Info-Greedy algorithms for Gaussian and Gaussian Mixture Model (GMM) signals, as well as ways to design sparse Info-Greedy measurements. Numerical examples demonstrate the good performance of the proposed algorithms using simulated and real data: Info-Greedy Sensing shows significant improvement over random projection for signals with sparse and low-rank covariance matrices, and adaptivity brings robustness when there is a mismatch between the assumed and the true distributions.Comment: Preliminary results presented at Allerton Conference 2014. To appear in IEEE Journal Selected Topics on Signal Processin

    One-bit compressed sensing with non-Gaussian measurements

    Full text link
    In one-bit compressed sensing, previous results state that sparse signals may be robustly recovered when the measurements are taken using Gaussian random vectors. In contrast to standard compressed sensing, these results are not extendable to natural non-Gaussian distributions without further assumptions, as can be demonstrated by simple counter-examples. We show that approximately sparse signals that are not extremely sparse can be accurately reconstructed from single-bit measurements sampled according to a sub-gaussian distribution, and the reconstruction comes as the solution to a convex program.Comment: 20 pages, streamlined proofs, improved error bound

    Further Results on Performance Analysis for Compressive Sensing Using Expander Graphs

    Get PDF
    Compressive sensing is an emerging technology which can recover a sparse signal vector of dimension n via a much smaller number of measurements than n. In this paper, we will give further results on the performance bounds of compressive sensing. We consider the newly proposed expander graph based compressive sensing schemes and show that, similar to the l_1 minimization case, we can exactly recover any k-sparse signal using only O(k log(n)) measurements, where k is the number of nonzero elements. The number of computational iterations is of order O(k log(n)), while each iteration involves very simple computational steps
    • …
    corecore