4,118 research outputs found

    Confidence sets in sparse regression

    Full text link
    The problem of constructing confidence sets in the high-dimensional linear model with nn response variables and pp parameters, possibly p≥np\ge n, is considered. Full honest adaptive inference is possible if the rate of sparse estimation does not exceed n−1/4n^{-1/4}, otherwise sparse adaptive confidence sets exist only over strict subsets of the parameter spaces for which sparse estimators exist. Necessary and sufficient conditions for the existence of confidence sets that adapt to a fixed sparsity level of the parameter vector are given in terms of minimal ℓ2\ell^2-separation conditions on the parameter space. The design conditions cover common coherence assumptions used in models for sparsity, including (possibly correlated) sub-Gaussian designs.Comment: Published in at http://dx.doi.org/10.1214/13-AOS1170 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Detection boundary in sparse regression

    Get PDF
    We study the problem of detection of a p-dimensional sparse vector of parameters in the linear regression model with Gaussian noise. We establish the detection boundary, i.e., the necessary and sufficient conditions for the possibility of successful detection as both the sample size n and the dimension p tend to the infinity. Testing procedures that achieve this boundary are also exhibited. Our results encompass the high-dimensional setting (p>> n). The main message is that, under some conditions, the detection boundary phenomenon that has been proved for the Gaussian sequence model, extends to high-dimensional linear regression. Finally, we establish the detection boundaries when the variance of the noise is unknown. Interestingly, the detection boundaries sometimes depend on the knowledge of the variance in a high-dimensional setting

    Robust and Sparse Regression via γ\gamma-divergence

    Full text link
    In high-dimensional data, many sparse regression methods have been proposed. However, they may not be robust against outliers. Recently, the use of density power weight has been studied for robust parameter estimation and the corresponding divergences have been discussed. One of such divergences is the γ\gamma-divergence and the robust estimator using the γ\gamma-divergence is known for having a strong robustness. In this paper, we consider the robust and sparse regression based on γ\gamma-divergence. We extend the γ\gamma-divergence to the regression problem and show that it has a strong robustness under heavy contamination even when outliers are heterogeneous. The loss function is constructed by an empirical estimate of the γ\gamma-divergence with sparse regularization and the parameter estimate is defined as the minimizer of the loss function. To obtain the robust and sparse estimate, we propose an efficient update algorithm which has a monotone decreasing property of the loss function. Particularly, we discuss a linear regression problem with L1L_1 regularization in detail. In numerical experiments and real data analyses, we see that the proposed method outperforms past robust and sparse methods.Comment: 25 page
    • …
    corecore