425,656 research outputs found

    Sparse Matrix Factorization

    Full text link
    We investigate the problem of factorizing a matrix into several sparse matrices and propose an algorithm for this under randomness and sparsity assumptions. This problem can be viewed as a simplification of the deep learning problem where finding a factorization corresponds to finding edges in different layers and values of hidden units. We prove that under certain assumptions for a sparse linear deep network with nn nodes in each layer, our algorithm is able to recover the structure of the network and values of top layer hidden units for depths up to O~(n1/6)\tilde O(n^{1/6}). We further discuss the relation among sparse matrix factorization, deep learning, sparse recovery and dictionary learning.Comment: 20 page

    DOA Estimation in Partially Correlated Noise Using Low-Rank/Sparse Matrix Decomposition

    Full text link
    We consider the problem of direction-of-arrival (DOA) estimation in unknown partially correlated noise environments where the noise covariance matrix is sparse. A sparse noise covariance matrix is a common model for a sparse array of sensors consisted of several widely separated subarrays. Since interelement spacing among sensors in a subarray is small, the noise in the subarray is in general spatially correlated, while, due to large distances between subarrays, the noise between them is uncorrelated. Consequently, the noise covariance matrix of such an array has a block diagonal structure which is indeed sparse. Moreover, in an ordinary nonsparse array, because of small distance between adjacent sensors, there is noise coupling between neighboring sensors, whereas one can assume that nonadjacent sensors have spatially uncorrelated noise which makes again the array noise covariance matrix sparse. Utilizing some recently available tools in low-rank/sparse matrix decomposition, matrix completion, and sparse representation, we propose a novel method which can resolve possibly correlated or even coherent sources in the aforementioned partly correlated noise. In particular, when the sources are uncorrelated, our approach involves solving a second-order cone programming (SOCP), and if they are correlated or coherent, one needs to solve a computationally harder convex program. We demonstrate the effectiveness of the proposed algorithm by numerical simulations and comparison to the Cramer-Rao bound (CRB).Comment: in IEEE Sensor Array and Multichannel signal processing workshop (SAM), 201

    Recovery of Low-Rank Plus Compressed Sparse Matrices with Application to Unveiling Traffic Anomalies

    Full text link
    Given the superposition of a low-rank matrix plus the product of a known fat compression matrix times a sparse matrix, the goal of this paper is to establish deterministic conditions under which exact recovery of the low-rank and sparse components becomes possible. This fundamental identifiability issue arises with traffic anomaly detection in backbone networks, and subsumes compressed sensing as well as the timely low-rank plus sparse matrix recovery tasks encountered in matrix decomposition problems. Leveraging the ability of 1\ell_1- and nuclear norms to recover sparse and low-rank matrices, a convex program is formulated to estimate the unknowns. Analysis and simulations confirm that the said convex program can recover the unknowns for sufficiently low-rank and sparse enough components, along with a compression matrix possessing an isometry property when restricted to operate on sparse vectors. When the low-rank, sparse, and compression matrices are drawn from certain random ensembles, it is established that exact recovery is possible with high probability. First-order algorithms are developed to solve the nonsmooth convex optimization problem with provable iteration complexity guarantees. Insightful tests with synthetic and real network data corroborate the effectiveness of the novel approach in unveiling traffic anomalies across flows and time, and its ability to outperform existing alternatives.Comment: 38 pages, submitted to the IEEE Transactions on Information Theor

    Performance Analysis and Optimization of Sparse Matrix-Vector Multiplication on Modern Multi- and Many-Core Processors

    Full text link
    This paper presents a low-overhead optimizer for the ubiquitous sparse matrix-vector multiplication (SpMV) kernel. Architectural diversity among different processors together with structural diversity among different sparse matrices lead to bottleneck diversity. This justifies an SpMV optimizer that is both matrix- and architecture-adaptive through runtime specialization. To this direction, we present an approach that first identifies the performance bottlenecks of SpMV for a given sparse matrix on the target platform either through profiling or by matrix property inspection, and then selects suitable optimizations to tackle those bottlenecks. Our optimization pool is based on the widely used Compressed Sparse Row (CSR) sparse matrix storage format and has low preprocessing overheads, making our overall approach practical even in cases where fast decision making and optimization setup is required. We evaluate our optimizer on three x86-based computing platforms and demonstrate that it is able to distinguish and appropriately optimize SpMV for the majority of matrices in a representative test suite, leading to significant speedups over the CSR and Inspector-Executor CSR SpMV kernels available in the latest release of the Intel MKL library.Comment: 10 pages, 7 figures, ICPP 201
    corecore