258,607 research outputs found
All Maximal Independent Sets and Dynamic Dominance for Sparse Graphs
We describe algorithms, based on Avis and Fukuda's reverse search paradigm,
for listing all maximal independent sets in a sparse graph in polynomial time
and delay per output. For bounded degree graphs, our algorithms take constant
time per set generated; for minor-closed graph families, the time is O(n) per
set, and for more general sparse graph families we achieve subquadratic time
per set. We also describe new data structures for maintaining a dynamic vertex
set S in a sparse or minor-closed graph family, and querying the number of
vertices not dominated by S; for minor-closed graph families the time per
update is constant, while it is sublinear for any sparse graph family. We can
also maintain a dynamic vertex set in an arbitrary m-edge graph and test the
independence of the maintained set in time O(sqrt m) per update. We use the
domination data structures as part of our enumeration algorithms.Comment: 10 page
Sparse Graph Codes for Quantum Error-Correction
We present sparse graph codes appropriate for use in quantum
error-correction. Quantum error-correcting codes based on sparse graphs are of
interest for three reasons. First, the best codes currently known for classical
channels are based on sparse graphs. Second, sparse graph codes keep the number
of quantum interactions associated with the quantum error correction process
small: a constant number per quantum bit, independent of the blocklength.
Third, sparse graph codes often offer great flexibility with respect to
blocklength and rate. We believe some of the codes we present are unsurpassed
by previously published quantum error-correcting codes.Comment: Version 7.3e: 42 pages. Extended version, Feb 2004. A shortened
version was resubmitted to IEEE Transactions on Information Theory Jan 20,
200
A Connectedness Constraint for Learning Sparse Graphs
Graphs are naturally sparse objects that are used to study many problems
involving networks, for example, distributed learning and graph signal
processing. In some cases, the graph is not given, but must be learned from the
problem and available data. Often it is desirable to learn sparse graphs.
However, making a graph highly sparse can split the graph into several
disconnected components, leading to several separate networks. The main
difficulty is that connectedness is often treated as a combinatorial property,
making it hard to enforce in e.g. convex optimization problems. In this
article, we show how connectedness of undirected graphs can be formulated as an
analytical property and can be enforced as a convex constraint. We especially
show how the constraint relates to the distributed consensus problem and graph
Laplacian learning. Using simulated and real data, we perform experiments to
learn sparse and connected graphs from data.Comment: 5 pages, presented at the European Signal Processing Conference
(EUSIPCO) 201
Interpolation of Sparse Graph Signals by Sequential Adaptive Thresholds
This paper considers the problem of interpolating signals defined on graphs.
A major presumption considered by many previous approaches to this problem has
been lowpass/ band-limitedness of the underlying graph signal. However,
inspired by the findings on sparse signal reconstruction, we consider the graph
signal to be rather sparse/compressible in the Graph Fourier Transform (GFT)
domain and propose the Iterative Method with Adaptive Thresholding for Graph
Interpolation (IMATGI) algorithm for sparsity promoting interpolation of the
underlying graph signal.We analytically prove convergence of the proposed
algorithm. We also demonstrate efficient performance of the proposed IMATGI
algorithm in reconstructing randomly generated sparse graph signals. Finally,
we consider the widely desirable application of recommendation systems and show
by simulations that IMATGI outperforms state-of-the-art algorithms on the
benchmark datasets in this application.Comment: 12th International Conference on Sampling Theory and Applications
(SAMPTA 2017
Sampling and Reconstruction of Sparse Signals on Circulant Graphs - An Introduction to Graph-FRI
With the objective of employing graphs toward a more generalized theory of
signal processing, we present a novel sampling framework for (wavelet-)sparse
signals defined on circulant graphs which extends basic properties of Finite
Rate of Innovation (FRI) theory to the graph domain, and can be applied to
arbitrary graphs via suitable approximation schemes. At its core, the
introduced Graph-FRI-framework states that any K-sparse signal on the vertices
of a circulant graph can be perfectly reconstructed from its
dimensionality-reduced representation in the graph spectral domain, the Graph
Fourier Transform (GFT), of minimum size 2K. By leveraging the recently
developed theory of e-splines and e-spline wavelets on graphs, one can
decompose this graph spectral transformation into the multiresolution low-pass
filtering operation with a graph e-spline filter, and subsequent transformation
to the spectral graph domain; this allows to infer a distinct sampling pattern,
and, ultimately, the structure of an associated coarsened graph, which
preserves essential properties of the original, including circularity and,
where applicable, the graph generating set.Comment: To appear in Appl. Comput. Harmon. Anal. (2017
Graph-Sparse LDA: A Topic Model with Structured Sparsity
Originally designed to model text, topic modeling has become a powerful tool
for uncovering latent structure in domains including medicine, finance, and
vision. The goals for the model vary depending on the application: in some
cases, the discovered topics may be used for prediction or some other
downstream task. In other cases, the content of the topic itself may be of
intrinsic scientific interest.
Unfortunately, even using modern sparse techniques, the discovered topics are
often difficult to interpret due to the high dimensionality of the underlying
space. To improve topic interpretability, we introduce Graph-Sparse LDA, a
hierarchical topic model that leverages knowledge of relationships between
words (e.g., as encoded by an ontology). In our model, topics are summarized by
a few latent concept-words from the underlying graph that explain the observed
words. Graph-Sparse LDA recovers sparse, interpretable summaries on two
real-world biomedical datasets while matching state-of-the-art prediction
performance
- …
