258,607 research outputs found

    All Maximal Independent Sets and Dynamic Dominance for Sparse Graphs

    Full text link
    We describe algorithms, based on Avis and Fukuda's reverse search paradigm, for listing all maximal independent sets in a sparse graph in polynomial time and delay per output. For bounded degree graphs, our algorithms take constant time per set generated; for minor-closed graph families, the time is O(n) per set, and for more general sparse graph families we achieve subquadratic time per set. We also describe new data structures for maintaining a dynamic vertex set S in a sparse or minor-closed graph family, and querying the number of vertices not dominated by S; for minor-closed graph families the time per update is constant, while it is sublinear for any sparse graph family. We can also maintain a dynamic vertex set in an arbitrary m-edge graph and test the independence of the maintained set in time O(sqrt m) per update. We use the domination data structures as part of our enumeration algorithms.Comment: 10 page

    Sparse Graph Codes for Quantum Error-Correction

    Full text link
    We present sparse graph codes appropriate for use in quantum error-correction. Quantum error-correcting codes based on sparse graphs are of interest for three reasons. First, the best codes currently known for classical channels are based on sparse graphs. Second, sparse graph codes keep the number of quantum interactions associated with the quantum error correction process small: a constant number per quantum bit, independent of the blocklength. Third, sparse graph codes often offer great flexibility with respect to blocklength and rate. We believe some of the codes we present are unsurpassed by previously published quantum error-correcting codes.Comment: Version 7.3e: 42 pages. Extended version, Feb 2004. A shortened version was resubmitted to IEEE Transactions on Information Theory Jan 20, 200

    A Connectedness Constraint for Learning Sparse Graphs

    Full text link
    Graphs are naturally sparse objects that are used to study many problems involving networks, for example, distributed learning and graph signal processing. In some cases, the graph is not given, but must be learned from the problem and available data. Often it is desirable to learn sparse graphs. However, making a graph highly sparse can split the graph into several disconnected components, leading to several separate networks. The main difficulty is that connectedness is often treated as a combinatorial property, making it hard to enforce in e.g. convex optimization problems. In this article, we show how connectedness of undirected graphs can be formulated as an analytical property and can be enforced as a convex constraint. We especially show how the constraint relates to the distributed consensus problem and graph Laplacian learning. Using simulated and real data, we perform experiments to learn sparse and connected graphs from data.Comment: 5 pages, presented at the European Signal Processing Conference (EUSIPCO) 201

    Interpolation of Sparse Graph Signals by Sequential Adaptive Thresholds

    Full text link
    This paper considers the problem of interpolating signals defined on graphs. A major presumption considered by many previous approaches to this problem has been lowpass/ band-limitedness of the underlying graph signal. However, inspired by the findings on sparse signal reconstruction, we consider the graph signal to be rather sparse/compressible in the Graph Fourier Transform (GFT) domain and propose the Iterative Method with Adaptive Thresholding for Graph Interpolation (IMATGI) algorithm for sparsity promoting interpolation of the underlying graph signal.We analytically prove convergence of the proposed algorithm. We also demonstrate efficient performance of the proposed IMATGI algorithm in reconstructing randomly generated sparse graph signals. Finally, we consider the widely desirable application of recommendation systems and show by simulations that IMATGI outperforms state-of-the-art algorithms on the benchmark datasets in this application.Comment: 12th International Conference on Sampling Theory and Applications (SAMPTA 2017

    Sampling and Reconstruction of Sparse Signals on Circulant Graphs - An Introduction to Graph-FRI

    Full text link
    With the objective of employing graphs toward a more generalized theory of signal processing, we present a novel sampling framework for (wavelet-)sparse signals defined on circulant graphs which extends basic properties of Finite Rate of Innovation (FRI) theory to the graph domain, and can be applied to arbitrary graphs via suitable approximation schemes. At its core, the introduced Graph-FRI-framework states that any K-sparse signal on the vertices of a circulant graph can be perfectly reconstructed from its dimensionality-reduced representation in the graph spectral domain, the Graph Fourier Transform (GFT), of minimum size 2K. By leveraging the recently developed theory of e-splines and e-spline wavelets on graphs, one can decompose this graph spectral transformation into the multiresolution low-pass filtering operation with a graph e-spline filter, and subsequent transformation to the spectral graph domain; this allows to infer a distinct sampling pattern, and, ultimately, the structure of an associated coarsened graph, which preserves essential properties of the original, including circularity and, where applicable, the graph generating set.Comment: To appear in Appl. Comput. Harmon. Anal. (2017

    Graph-Sparse LDA: A Topic Model with Structured Sparsity

    Full text link
    Originally designed to model text, topic modeling has become a powerful tool for uncovering latent structure in domains including medicine, finance, and vision. The goals for the model vary depending on the application: in some cases, the discovered topics may be used for prediction or some other downstream task. In other cases, the content of the topic itself may be of intrinsic scientific interest. Unfortunately, even using modern sparse techniques, the discovered topics are often difficult to interpret due to the high dimensionality of the underlying space. To improve topic interpretability, we introduce Graph-Sparse LDA, a hierarchical topic model that leverages knowledge of relationships between words (e.g., as encoded by an ontology). In our model, topics are summarized by a few latent concept-words from the underlying graph that explain the observed words. Graph-Sparse LDA recovers sparse, interpretable summaries on two real-world biomedical datasets while matching state-of-the-art prediction performance
    corecore