818,159 research outputs found
Generalized PSK in Space Time Coding
A wireless communication system using multiple antennas promises reliable
transmission under Rayleigh flat fading assumptions. Design criteria and
practical schemes have been presented for both coherent and non-coherent
communication channels. In this paper we generalize one dimensional phase shift
keying (PSK) signals and introduce space time constellations from generalized
phase shift keying (GPSK) signals based on the complex and real orthogonal
designs. The resulting space time constellations reallocate the energy for each
transmitting antenna and feature good diversity products, consequently their
performances are better than some of the existing comparable codes. Moreover
since the maximum likelihood (ML) decoding of our proposed codes can be
decomposed to one dimensional PSK signal demodulation, the ML decoding of our
codes can be implemented in a very efficient way.Comment: 22 pages, 3 figures, submitted to IEEE transactions on communicaton
Distributed Space Time Coding for Wireless Two-way Relaying
We consider the wireless two-way relay channel, in which two-way data
transfer takes place between the end nodes with the help of a relay. For the
Denoise-And-Forward (DNF) protocol, it was shown by Koike-Akino et. al. that
adaptively changing the network coding map used at the relay greatly reduces
the impact of Multiple Access interference at the relay. The harmful effect of
the deep channel fade conditions can be effectively mitigated by proper choice
of these network coding maps at the relay. Alternatively, in this paper we
propose a Distributed Space Time Coding (DSTC) scheme, which effectively
removes most of the deep fade channel conditions at the transmitting nodes
itself without any CSIT and without any need to adaptively change the network
coding map used at the relay. It is shown that the deep fades occur when the
channel fade coefficient vector falls in a finite number of vector subspaces of
, which are referred to as the singular fade subspaces. DSTC
design criterion referred to as the \textit{singularity minimization criterion}
under which the number of such vector subspaces are minimized is obtained.
Also, a criterion to maximize the coding gain of the DSTC is obtained. Explicit
low decoding complexity DSTC designs which satisfy the singularity minimization
criterion and maximize the coding gain for QAM and PSK signal sets are
provided. Simulation results show that at high Signal to Noise Ratio, the DSTC
scheme provides large gains when compared to the conventional Exclusive OR
network code and performs slightly better than the adaptive network coding
scheme proposed by Koike-Akino et. al.Comment: 27 pages, 4 figures, A mistake in the proof of Proposition 3 given in
Appendix B correcte
A coding scheme for wireless networks with multiple antenna nodes and no channel information
In this paper, we present a coding strategy for wireless relay networks where the relay nodes are small devices with few resources, while the source and sink are equipped with multiple antennas to increase the transmission rate. We assume no channel knowledge at all, and the receiver decodes knowing none of the channel paths. This coding scheme uses distributed space-time coding techniques and is inspired by noncoherent differential space-time coding. It is shown to yield a diversity linear in the minimum number of transmit/receive antennas times the number of relays
Space-time coding for UMTS. Performance evaluation in combination with convolutional and turbo coding
Space-time codes provide both diversity and coding gain when using multiple transmit antennas to increase spectral efficiency over wireless communications systems. Space-time block codes have already been included in the standardization process of UMTS in conjunction with conventional channel codes (convolutional and turbo codes). We discuss different encoding and decoding strategies when transmit diversity is combined with conventional channel codes, and present simulations results for the TDD and FDD modes of UTRA.Peer ReviewedPostprint (published version
Space-Time Trellis and Space-Time Block Coding Versus Adaptive Modulation and Coding Aided OFDM for Wideband Channels
Abstract—The achievable performance of channel coded spacetime trellis (STT) codes and space-time block (STB) codes transmitted over wideband channels is studied in the context of schemes having an effective throughput of 2 bits/symbol (BPS) and 3 BPS. At high implementational complexities, the best performance was typically provided by Alamouti’s unity-rate G2 code in both the 2-BPS and 3-BPS scenarios. However, if a low complexity implementation is sought, the 3-BPS 8PSK space-time trellis code outperfoms the G2 code. The G2 space-time block code is also combined with symbol-by-symbol adaptive orthogonal frequency division multiplex (AOFDM) modems and turbo convolutional channel codecs for enhancing the system’s performance. It was concluded that upon exploiting the diversity effect of the G2 space-time block code, the channel-induced fading effects are mitigated, and therefore, the benefits of adaptive modulation erode. In other words, once the time- and frequency-domain fades of the wideband channel have been counteracted by the diversity-aided G2 code, the benefits of adaptive modulation erode, and hence, it is sufficient to employ fixed-mode modems. Therefore, the low-complexity approach of mitigating the effects of fading can be viewed as employing a single-transmitter, single-receiver-based AOFDM modem. By contrast, it is sufficient to employ fixed-mode OFDM modems when the added complexity of a two-transmitter G2 scheme is affordable
Application of Space-Time Diversity/Coding For Power Line Channels
The purpose of the present work is to evaluate the application of space-time block codes to the transmission of digital data over the power-line communication channel (PLC). Data transmitted over the power-line channel is usually corrupted by impulsive noise. In this work we analyse
the performance of space-time block codes in this type of environment and show that a significant performance gain can be achieved at almost no processing expense
Concatenated Space Time Block Codes and TCM, Turbo TCM Convolutional as well as Turbo Codes
Space-time block codes provide substantial diversity advantages for multiple transmit antenna systems at a low decoding complexity. In this paper, we concatenate space-time codes with Convolutional Codes (CC), Turbo Convolutional codes (TC), Turbo BCH codes (TBCH), Trellis Coded Modulation (TCM) and Turbo Trellis Coded Modulation (TTCM) schemes for achieving a high coding gain. The associated performance and complexity of the coding schemes is compared
Distributed Space-Time Coding for Full-Duplex Asynchronous Cooperative Communications
In this paper, we propose two distributed linear convolutional space-time
coding (DLC-STC) schemes for full-duplex (FD) asynchronous cooperative
communications. The DLC-STC Scheme 1 is for the case of the complete loop
channel cancellation, which achieves the full asynchronous cooperative
diversity. The DLC-STC Scheme 2 is for the case of the partial loop channel
cancellation and amplifying, where some loop signals are used as the
self-coding instead of treated as interference to be directly cancelled. We
show this scheme can achieve full asynchronous cooperative diversity. We then
evaluate the performance of the two schemes when loop channel information is
not accurate and present an amplifying factor control method for the DLC-STC
Scheme 2 to improve its performance with inaccurate loop channel information.
Simulation results show that the DLC-STC Scheme 1 outperforms the DLC-STC
Scheme 2 and the delay diversity scheme if perfect or high quality loop channel
information is available at the relay, while the DLC-STC Scheme 2 achieves
better performance if the loop channel information is imperfect.Comment: 9 pages, 7 figure
- …
