16,792 research outputs found

    History of the tether concept and tether missions: a review

    Get PDF
    This paper introduces history of space tethers, including tether concepts and tether missions, and attempts to provide a source of references for historical understanding of space tethers. Several concepts of space tethers since the original concept has been conceived are listed in the literature, as well as a summary of interesting applications, and a research of space tethers is given. With the aim of implementing scientific experiments in aerospace, several space tether missions which have been delivered for aerospace application are introduced in the literature.</jats:p

    Tethers in space handbook

    Get PDF
    The handbook provides a list and description of ongoing tether programs. This includes the joint U.S.-Italy demonstration project, and individual U.S. and Italian studies and demonstration programs. An overview of the current activity level and areas of emphasis in this emerging field is provided. The fundamental physical principles behind the proposed tether applications are addressed. Four basic concepts of gravity gradient, rotation, momentum exchange, and electrodynamics are discussed. Information extracted from literature, which supplements and enhances the tether applications is also presented. A bibliography is appended

    Applications of tethers in space: A review of workshop recommendations

    Get PDF
    Well-organized and structured efforts of considerable magnitude involving NASA, industry, and academia have explored and defined the engineering and technological requirements of the use of tethers in space and have discovered their broad range of operational and economic benefits. The results of these efforts have produced a family of extremely promising candidate applications. The extensive efforts now in progress are gaining momentum and a series of flight demonstrations are being planned and can be expected to take place in a few years. This report provides an analysis and a review of NASA's second major workshop on Applications of Tethers in Space held in October 15 to 17, 1985, in Venice, Italy. It provides a summary of an up-to-date assessment and recommendations by the NASA Tether Applications in Space Program Planning Group, consisting of representatives of seven NASA Centers and responsible for tether applications program planning implementation as recommended by the workshop panels

    Physics and applications of electrodynamic space tethers

    Get PDF
    Basic effects and dynamical and electrical contact issues in the physics of (electrodynamic space) bare tethers are discussed. Scientific experiments and powerpropulsion applications, including a paradoxical use of bare tethers in outer-planet exploration,are considered

    Electrodynamic tether

    Get PDF
    Electrodynamic tethers hold promise for a variety of space applications. Electrodynamic tethers depend upon the interactions between a moving insulated conductor and the Earth's magnetic field. An electric field is generated along the tether as in a conductor moving in the magnetic field of a generator. If the circuit is closed to the ambient space plasma via a plasma gun or other equivalent device, a current is enabled to flow in the tether, and electric power is generated at the expense of orbital mechanical energy. The net effect is a decrease in the altitude of the orbiting tethered system. The situation can be reversed by driving current against the electric field via an external power supply such as a photovoltaic array

    Plasma issues associated with the use of electrodynamic tethers

    Get PDF
    The use of an electrodynamic tether to generate power or thrust on the space station raises important plasma issues associted with the current flow. In addition to the issue of current closure through the space station, high power tethers (equal to or greater than tens of kilowatts) require the use of plasma contactors to enhance the current flow. They will generate large amounts of electrostatic turbulence in the vicinity of the space station. This is because the contactors work best when a large amount of current driven turbulence is excited. Current work is reviewed and future directions suggested
    corecore