135,651 research outputs found

    Segue Between Favorable and Unfavorable Solvation

    Full text link
    Solvation of small and large clusters are studied by simulation, considering a range of solvent-solute attractive energy strengths. Over a wide range of conditions, both for solvation in the Lennard-Jones liquid and in the SPC model of water, it is shown that the mean solvent density varies linearly with changes in solvent-solute adhesion or attractive energy strength. This behavior is understood from the perspective of Weeks' theory of solvation [Ann. Rev. Phys. Chem. 2002, 53, 533] and supports theories based upon that perspective.Comment: 8 pages, 7 figure

    Structure and thermodynamics of a mixture of patchy and spherical colloids: a multi-body association theory with complete reference fluid information

    Get PDF
    A mixture of solvent particles with short-range, directional interactions and solute particles with short-range, isotropic interactions that can bond multiple times is of fundamental interest in understanding liquids and colloidal mixtures. Because of multi-body correlations predicting the structure and thermodynamics of such systems remains a challenge. Earlier Marshall and Chapman developed a theory wherein association effects due to interactions multiply the partition function for clustering of particles in a reference hard-sphere system. The multi-body effects are incorporated in the clustering process, which in their work was obtained in the absence of the bulk medium. The bulk solvent effects were then modeled approximately within a second order perturbation approach. However, their approach is inadequate at high densities and for large association strengths. Based on the idea that the clustering of solvent in a defined coordination volume around the solute is related to occupancy statistics in that defined coordination volume, we develop an approach to incorporate the complete information about hard-sphere clustering in a bulk solvent at the density of interest. The occupancy probabilities are obtained from enhanced sampling simulations but we also develop a concise parametric form to model these probabilities using the quasichemical theory of solutions. We show that incorporating the complete reference information results in an approach that can predict the bonding state and thermodynamics of the colloidal solute for a wide range of system conditions.Comment: arXiv admin note: text overlap with arXiv:1601.0438

    Molecular Density Functional Theory of Water describing Hydrophobicity at Short and Long Length Scales

    Full text link
    We present an extension of our recently introduced molecular density functional theory of water [G. Jeanmairet et al., J. Phys. Chem. Lett. 4, 619, 2013] to the solvation of hydrophobic solutes of various sizes, going from angstroms to nanometers. The theory is based on the quadratic expansion of the excess free energy in terms of two classical density fields, the particle density and the multipolar polarization density. Its implementation requires as input a molecular model of water and three measurable bulk properties, namely the structure factor and the k-dependent longitudinal and transverse dielectric susceptibilities. The fine three-dimensional water structure around small hydrophobic molecules is found to be well reproduced. In contrast the computed solvation free-energies appear overestimated and do not exhibit the correct qualitative behavior when the hydrophobic solute is grown in size. These shortcomings are corrected, in the spirit of the Lum-Chandler-Weeks theory, by complementing the functional with a truncated hard-sphere functional acting beyond quadratic order in density. It makes the resulting functional compatible with the Van-der-Waals theory of liquid-vapor coexistence at long range. Compared to available molecular simulations, the approach yields reasonable solvation structure and free energy of hard or soft spheres of increasing size, with a correct qualitative transition from a volume-driven to a surface-driven regime at the nanometer scale.Comment: 24 pages, 8 figure

    Tuning effective interactions close to the critical point in colloidal suspensions

    Full text link
    We report a numerical investigation of two colloids immersed in a critical solvent, with the aim of quantifying the effective colloid-colloid interaction potential. By turning on an attraction between the colloid and the solvent particles we follow the evolution from the case in which the solvent density close to the colloids changes from values smaller than the bulk to values larger than the bulk. We thus effectively implement the so-called (+,+)(+,+) and (,)(-,-) boundary conditions defined in field theoretical approaches focused on the description of critical Casimir forces. We find that the effective potential at large distances decays exponentially, with a characteristic decay length compatible with the bulk critical correlation length, in full agreement with theoretical predictions. We also investigate the case of (+,)(+,-) boundary condition, where the effective potential becomes repulsive. Our study provides a guidance for a design of the interaction potential which can be exploited to control the stability of colloidal systems

    Role of solvent for globular proteins in solution

    Full text link
    The properties of the solvent affect the behavior of the solution. We propose a model that accounts for the contribution of the solvent free energy to the free energy of globular proteins in solution. For the case of an attractive square well potential, we obtain an exact mapping of the phase diagram of this model without solvent to the model that includes the solute-solvent contribution. In particular we find for appropriate choices of parameters upper critical points, lower critical points and even closed loops with both upper and lower critical points, similar to one found before [Macromolecules, 36, 5845 (2003)]. In the general case of systems whose interactions are not attractive square wells, this mapping procedure can be a first approximation to understand the phase diagram in the presence of solvent. We also present simulation results for both the square well model and a modified Lennard-Jones model.Comment: 18 pages, 9 figure

    Screening of Coulomb interactions in liquid dielectrics

    Full text link
    The interaction of charges in dielectric materials is screened by the dielectric constant of the bulk dielectric. In dielectric theories, screening is assigned to the surface charge appearing from preferential orientations of dipoles along the local field in the interface. For liquid dielectrics, such interfacial orientations are affected by the interfacial structure characterized by a separate interfacial dielectric susceptibility. We argue that dielectric properties of polar liquids should be characterized by two distinct susceptibilities responsible for local response (solvation) and long-range response (dielectric screening). We develop a microscopic model of screening showing that the standard bulk dielectric constant is responsible for screening at large distances. The potential of mean force between ions in polar liquids becomes oscillatory at short distances. Oscillations arise from the coupling of the collective longitudinal excitations of the dipoles in the bulk with the interfacial structure of the liquid around the solutes

    Solvation in atomic liquids: connection between Gaussian field theory and density functional theory

    Full text link
    For the problem of molecular solvation, formulated as a liquid submitted to the external potential field created by a molecular solute of arbitrary shape dissolved in that solvent, we draw a connection between the Gaussian field theory derived by David Chandler [Phys. Rev. E, 1993, 48, 2898] and classical density functional theory. We show that Chandler's results concerning the solvation of a hard core of arbitrary shape can be recovered by either minimising a linearised HNC functional using an auxiliary Lagrange multiplier field to impose a vanishing density inside the core, or by minimising this functional directly outside the core --- indeed a simpler procedure. Those equivalent approaches are compared to two other variants of DFT, either in the HNC, or partially linearised HNC approximation, for the solvation of a Lennard-Jones solute of increasing size in a Lennard-Jones solvent. Compared to Monte-Carlo simulations, all those theories give acceptable results for the inhomogeneous solvent structure, but are completely out-of-range for the solvation free-energies. This can be fixed in DFT by adding a hard-sphere bridge correction to the HNC functional.Comment: 14 pages, 4 figure

    A joint time-dependent density-functional theory for excited states of electronic systems in solution

    Full text link
    We present a novel joint time-dependent density-functional theory for the description of solute-solvent systems in time-dependent external potentials. Starting with the exact quantum-mechanical action functional for both electrons and nuclei, we systematically eliminate solvent degrees of freedom and thus arrive at coarse-grained action functionals which retain the highly accurate \emph{ab initio} description for the solute and are, in principle, exact. This procedure allows us to examine approximations underlying popular embedding theories for excited states. Finally, we introduce a novel approximate action functional for the solute-water system and compute the solvato-chromic shift of the lowest singlet excited state of formaldehyde in aqueous solution, which is in good agreement with experimental findings.Comment: 11 page
    corecore