526,260 research outputs found

    Separation of gas from liquid in a two-phase flow system

    Get PDF
    Separation system causes jets which leave two-phase nozzles to impinge on each other, so that liquid from jets tends to coalesce in center of combined jet streams while gas phase is forced to outer periphery. Thus, because liquid coalescence is achieved without resort to separation with solid surfaces, cycle efficiency is improved

    In situ analysis of solvent/nonsolvent exchange and phase separation processes during the membrane formation of polylactides

    Get PDF
    Membrane formation of polylactides has been studied using in situ analysis techniques. An experimental method based on the use of dark ground optics and reflected light illumination is used to monitor the mass transfer and phase separation dynamics during for mation. Additionally, the phase separation and structure formation has been studied using optical microscopy. The results of the dark ground optics technique for the polymer/solvent/nonsolvent systems poly-L-lactide/chloroform/methanol and poly-DL-lactide/chloroform/methanol showed that the diffusion kinetics were similar for the semicrystalline poly-L-lactide (PLLA) and the amorphous poly-DL-lactide. The influence of the molecular weight of the polymers on the diffusion kinetics was found to be negligible. Increasing the polymer concentration of the casting solution decreased the rate of diffusion. The phase separation of poly-DL-lactide was studied with optical microscopy and found to proceed via liquid-liquid demixing. For poly-L-lactide solutions of relatively low concentration (5-6% w/w), phase separation proceeded via liquid-liquid demixing followed by crystallization. For more concentrated PLLA solutions, phase separation proceeded directly via solid-liquid demixing processes. Additionally, for 6% w/w solutions of poly-L-lactide in dioxane immersed in methanol, precipitation also occurred solely via solid-liquid demixing

    Adhesion and nonwetting-wetting transition in the Al/alpha-Al_2O_3 interface

    Get PDF
    Using a reactive force field (ReaxFF), we investigated the structural, energetic, and adhesion properties, of both solid and liquid Al/alpha-Al2O3 interfaces. The ReaxFF was developed solely with ab initio calculations on various phases of Al and Al2O3 and Al-O-H clusters. Our computed lattice constants, elastic constants, surface energies, and calculated work of separation for the solid-solid interface agree well with earlier first-principles calculations and experiments. For the liquid-solid system, we also investigated the nonwetting-wetting transition of liquid Al on alpha-Al2O3(0001). Our results revealed that the evaporation of Al atoms and diffusion of O atoms in alpha-Al2O3 lead to the wetting of liquid Al on the oxide surface. The driving force for this process is a decrease in interfacial energy. The nonwetting-wetting transition was found to lie in the 1000–1100 K range, which is in good agreement with sessile drop experiments

    Direct MD simulation of liquid-solid phase equilibria for three-component plasma

    Full text link
    The neutron rich isotope 22Ne may be a significant impurity in carbon and oxygen white dwarfs and could impact how the stars freeze. We perform molecular dynamics simulations to determine the influence of 22Ne in carbon-oxygen-neon systems on liquid-solid phase equilibria. Both liquid and solid phases are present simultaneously in our simulation volumes. We identify liquid, solid, and interface regions in our simulations using a bond angle metric. In general we find good agreement for the composition of liquid and solid phases between our MD simulations and the semi analytic model of Medin and Cumming. The trace presence of a third component, neon, does not appear to strongly impact the chemical separation found previously for two component carbon and oxygen systems. This suggests that small amounts of 22Ne may not qualitatively change how the material in white dwarf stars freezes. However, we do find systematically lower melting temperatures (higher Gamma) in our MD simulations compared to the semi analytic model. This difference seems to grow with impurity parameter Q_imp and suggests a problem with simple corrections to the linear mixing rule for the free energy of multicomponent solid mixtures that is used in the semi analytic model.Comment: 11 pages, 6 figures, Phys Rev E in pres

    Numerical analysis of wet separation of particles by density differences

    Full text link
    Wet particle separation is widely used in mineral processing and plastic recycling to separate mixtures of particulate materials into further usable fractions due to density differences. This work presents efforts aiming to numerically analyze the wet separation of particles with different densities. In the current study the discrete element method (DEM) is used for the solid phase while the smoothed particle hydrodynamics (SPH) is used for modeling of the liquid phase. The two phases are coupled by the use of a volume averaging technique. In the current study, simulations of spherical particle separation were performed. In these simulations, a set of generated particles with two different densities is dropped into a rectangular container filled with liquid. The results of simulations with two different mixtures of particles demonstrated how separation depends on the densities of particles.Comment: This manuscript was accepted for the publication in the conference proceedings of ICNAAM 2016 conferenc

    From colloidal dispersions to colloidal pastesthrough solid–liquid separation processes

    Get PDF
    Solid–liquid separation is an operation that starts with a dispersion of solid particles in a liquid and removes some of the liquid from the particles, producing a concentrated solid paste and a clean liquid phase. It is similar to thermodynamic processes where pressure is applied to a system in order to reduce its volume. In dispersions, the resistance to this osmotic compression depends on interactions between the dispersed particles. The first part of this work deals with dispersions of repelling particles, which are either silica nanoparticles or synthetic clay platelets, dispersed in aqueous solutions. In these conditions, each particle is surrounded by an ionic layer, which repels other ionic layers. This results in a structure with strong short-range order. At high particle volume fractions, the overlap of ionic layers generates large osmotic pressures; these pressures may be calculated, through the cell model, as the cost of reducing the volume of each cell. The variation of osmotic pressure with volume fraction is the equation of state of the dispersion. The second part of this work deals with dispersions of aggregated particles, which are silica nanoparticles, dispersed in water and flocculated by multivalent cations. This produces large bushy aggregates, with fractal structures that are maintained through interparticle surface– surface bonds. As the paste is submitted to osmotic pressures, small relative displacements of the aggregated particles lead to structural collapse. The final structure is made of a dense skeleton immersed in a nearly homogeneous matrix of aggregated particles. The variation of osmotic resistance with volume fraction is the compression law of the paste; it may be calculated through a numerical model that takes into account the noncentral interparticle forces. According to this model, the response of aggregated pastes to applied stress may be controlled through the manipulation of interparticle adhesion

    Use of frit-disc crucibles for routine and exploratory solution growth of single crystalline samples

    Get PDF
    Solution growth of single crystals from high temperature solutions often involves the separation of residual solution from the grown crystals. For many growths of intermetallic compounds, this separation has historically been achieved with the use of plugs of silica wool. Whereas this is generally efficient in a mechanical sense, it leads to a significant contamination of the decanted liquid with silica fibers. In this paper we present a simple design for frit-disc alumina crucible sets that has made their use in the growth single crystals from high temperature solutions both simple and affordable. An alumina frit-disc allows for the clean separation of the residual liquid from the solid phase. This allows for the reuse of the decanted liquid, either for further growth of the same phase, or for subsequent growth of other, related phases. In this paper we provide examples of the growth of isotopically substituted TbCd6_{6} and icosahedral i-RRCd quasicrystals, as well as the separation of (i) the closely related Bi2_{2}Rh3_{3}S2_{2} and Bi2_{2}Rh3.5_{3.5}S2_{2} phases and (ii) PrZn11_{11} and Pr2_{2}Zn17_{17}.Comment: submitted to Philosophical Magazin

    Electric field induced strong localization of electrons on solid hydrogen surface: possible applications to quantum computing

    Full text link
    Two-dimensional electron system on the liquid helium surface is one of the leading candidates for constructing large analog quantum computers (P.M. Platzman and M.I. Dykman, Science 284, 1967 (1999)). Similar electron systems on the surfaces of solid hydrogen or solid neon may have some important advantages with respect to electrons on liquid helium in quantum computing applications, such as larger state separation ΔE\Delta E, absence of propagating capillary waves (or ripplons), smaller vapor pressure, etc. As a result, it may operate at higher temperatures. Surface roughness is the main hurdle to overcome in building a realistic quantum computer using these states. Electric field induced strong localization of surface electrons is shown to be a convenient tool to characterize surface roughness.Comment: 4 pages, 3 figure

    Role of Metastable States in Phase Ordering Dynamics

    Full text link
    We show that the rate of separation of two phases of different densities (e.g. gas and solid) can be radically altered by the presence of a metastable intermediate phase (e.g. liquid). Within a Cahn-Hilliard theory we study the growth in one dimension of a solid droplet from a supersaturated gas. A moving interface between solid and gas phases (say) can, for sufficient (transient) supersaturation, unbind into two interfaces separated by a slab of metastable liquid phase. We investigate the criteria for unbinding, and show that it may strongly impede the growth of the solid phase.Comment: 4 pages, Latex, Revtex, epsf. Updated two reference
    corecore