228,740 research outputs found

    Elevated CO2 and Warming Altered Grassland Microbial Communities in Soil Top-Layers.

    Get PDF
    As two central issues of global climate change, the continuous increase of both atmospheric CO2 concentrations and global temperature has profound effects on various terrestrial ecosystems. Microbial communities play pivotal roles in these ecosystems by responding to environmental changes through regulation of soil biogeochemical processes. However, little is known about the effect of elevated CO2 (eCO2) and global warming on soil microbial communities, especially in semiarid zones. We used a functional gene array (GeoChip 3.0) to measure the functional gene composition, structure, and metabolic potential of soil microbial communities under warming, eCO2, and eCO2 + warming conditions in a semiarid grassland. The results showed that the composition and structure of microbial communities was dramatically altered by multiple climate factors, including elevated CO2 and increased temperature. Key functional genes, those involved in carbon (C) degradation and fixation, methane metabolism, nitrogen (N) fixation, denitrification and N mineralization, were all stimulated under eCO2, while those genes involved in denitrification and ammonification were inhibited under warming alone. The interaction effects of eCO2 and warming on soil functional processes were similar to eCO2 alone, whereas some genes involved in recalcitrant C degradation showed no significant changes. In addition, canonical correspondence analysis and Mantel test results suggested that NO3-N and moisture significantly correlated with variations in microbial functional genes. Overall, this study revealed the possible feedback of soil microbial communities to multiple climate change factors by the suppression of N cycling under warming, and enhancement of C and N cycling processes under either eCO2 alone or in interaction with warming. These findings may enhance our understanding of semiarid grassland ecosystem responses to integrated factors of global climate change

    Plant and soil microbe responses to light, warming and nitrogen addition in a temperate forest

    Get PDF
    1. Temperate forests across Europe and eastern North America have become denser since the 1950s due to less intensive forest management and global environmental changes such as nitrogen deposition and climate warming. Denser tree canopies result in lower light availability at the forest floor. This shade may buffer the effects of nitrogen deposition and climate warming on understorey plant communities. 2. We conducted an innovative in situ field experiment to study the responses of co-occurring soil microbial and understorey plant communities to nitrogen addition, enhanced light availability and experimental warming in a full-factorial design. 3. We determined the effects of multiple environmental drivers and their interactions on the soil microbial and understorey plant communities, and assessed to what extent the soil microbial and understorey plant communities covary. 4. High light led to lower biomass of the soil microbes (analysed by phospholipid fatty acids), but the soil microbial structure, i.e. the ratio of fungal biomass to bacterial biomass, was not affected by light availability. The composition of the soil bacterial community (analysed by high-throughput sequencing) was affected by both light availability and warming (and their interaction), but not by nitrogen addition. Yet, the number of unique operational taxonomic units was higher in plots with nitrogen addition, and there were significant interactive effects of light and nitrogen addition. Light availability also determined the composition of the plant community; no effects of nitrogen addition and warming were observed. The soil bacterial and plant communities were co-structured, and light availability explained a large part of the variance of this co-structure. 5. We provide robust evidence for the key role of light in affecting both the soil microbial and plant communities in forest understoreys. Our results advocate for more multifactor global change experiments that investigate the mechanism underlying the (in) direct effects of light on the plant-soil continuum in forests

    Seasonal dynamics of soil respiration and nitrogen mineralization in chronically warmed and fertilized soils

    Get PDF
    Although numerous studies have examined the individual effects of increased temperatures and N deposition on soil biogeochemical cycling, few have considered how these disturbances interact to impact soil C and N dynamics. Likewise, many have not assessed season-specific responses to warming and N inputs despite seasonal variability in soil processes. We studied interactions among season, warming, and N additions on soil respiration and N mineralization at the Soil Warming × Nitrogen Addition Study at the Harvard Forest. Of particular interest were wintertime fluxes of C and N typically excluded from investigations of soils and global change. Soils were warmed to 5°C above ambient, and N was applied at a rate of 5 g m−2 y−1. Soil respiration and N mineralization were sampled over two years between 2007 and 2009 and showed strong seasonal patterns that mirrored changes in soil temperature. Winter fluxes of C and N contributed between 2 and 17% to the total annual flux. Net N mineralization increased in response to the experimental manipulations across all seasons, and was 8% higher in fertilized plots and 83% higher in warmed plots over the duration of the study. Soil respiration showed a more season-specific response. Nitrogen additions enhanced soil respiration by 14%, but this increase was significant only in summer and fall. Likewise, warming increased soil respiration by 44% over the whole study period, but the effect of warming was most pronounced in spring and fall. The only interaction between warming × N additions took place in autumn, when N availability likely diminished the positive effect of warming on soil respiration. Our results suggest that winter measurements of C and N are necessary to accurately describe winter biogeochemical processes. In addition, season-specific responses to the experimental treatments suggest that some components of the belowground community may be more susceptible to warming and N additions than others. Seasonal changes in the abiotic environment may have also interacted with the experimental manipulations to evoke biogeochemical responses at certain times of year

    Soil-surface CO2 flux and growth in a boreal Norway spruce stand

    Get PDF
    Global warming is predicted to affect the carbon balance of forests. A change in the carbon balance would give a positive or negative feedback to the greenhouse effect, which would affect global warming. The effects of long-term soil warming on growth, nutrient and soil-surface CO2 flux (R) dynamics were studied in irrigated (I) and irrigated-fertilised (IL) stands of Norway spruce in northern Sweden. Soil temperature on heated plots (Ih and ILh) was maintained 5 oC above that on unheated plots (Ic and ILc) from May to October, by heating cables. After six years' soil warming, stemwood production increased by 100% and 50% in the I and IL treatment, respectively. The main production increase occurred at the beginning of the season, probably as an effect of the earlier increase in soil temperature. In the Ih treatment, however, the growth increase was evident during the entire season. The effect of increased nitrogen (N), mineralisation on annual growth appeared to be stronger than the direct effect of warming. From 1995−2000, the total amount of N stored in aboveground tree parts increased by 100 and 475 kg N ha-1 on Ic and ILc plots, respectively. During the same period, 450 kg N fertiliser was added to the ILc plot. Soil warming increased the total amount of N stored in aboveground tree parts by 50 kg N ha-1, independently of nutrient treatment. Soil warming did not significantly increase R, except in early spring, when R was 30−50% higher on heated compared to unheated plots. The extended growing season, however, increased annual respiration (RA) by 12−30% throughout. RA losses were estimated to be 0.6−0.7 kg C ha-1 a-1. Use of relationships between R and soil temperature, derived from unheated plots, overestimated RA on heated plots by 50−80%. These results suggest that acclimation of root or microbial respiration or both to temperature had occurred, but the exact process(es) and their relative contribution are still unclear. In conclusion, the study showed that soil warming stimulated tree growth, but resulted in only a minor increase of annual R, suggesting an increased carbon sink for boreal forests in a warmer climate

    Impacts of extreme winter warming events on litter decomposition in a sub-Arctic heathland

    Get PDF
    Arctic climate change is expected to lead to a greater frequency of extreme winter warming events. During these events, temperatures rapidly increase to well above 0 degrees C for a number of days, which can lead to snow melt at the landscape scale, loss of insulating snow cover and warming of soils. However, upon return of cold ambient temperatures, soils can freeze deeper and may experience more freeze-thaw cycles due to the absence of a buffering snow layer. Such loss of snow cover and changes in soil temperatures may be critical for litter decomposition since a stable soil microclimate during winter (facilitated by snow cover) allows activity of soil organisms. Indeed, a substantial part of fresh litter decomposition may occur in winter. However, the impacts of extreme winter warming events on soil processes such as decomposition have never before been investigated. With this study we quantify the impacts of winter warming events on fresh litter decomposition using field simulations and lab studies. Winter warming events were simulated in sub-Arctic heathland using infrared heating lamps and soil warming cables during March (typically the period of maximum snow depth) in three consecutive years of 2007, 2008, and 2009. During the winters of 2008 and 2009, simulations were also run in January (typically a period of shallow snow cover) on separate plots. The lab study included soil cores with and without fresh litter subjected to winter-warming simulations in climate chambers. Litter decomposition of common plant species was unaffected by winter warming events simulated either in the lab (litter of Betula pubescens ssp. czerepanovii), or field (litter of Vaccinium vitis-idaea, and B. pubescens ssp. czerepanovii) with the exception of Vaccinium myrtillus (a common deciduous dwarf shrub) that showed less mass loss in response to winter warming events. Soil CO2 efflux measured in the lab study was (as expected) highly responsive to winter warming events but surprisingly fresh litter decomposition was not. Most fresh litter mass loss in the lab occurred during the first 3-4 weeks (simulating the period after litter fall). In contrast to past understanding, this suggests that winter decomposition of fresh litter is almost nonexistent and observations of substantial mass loss across the cold season seen here and in other studies may result from leaching in autumn, prior to the onset of "true" winter. Further, our findings surprisingly suggest that extreme winter warming events do not affect fresh litter decomposition. Crown Copyright (c) 2009 Published by Elsevier Ltd. All rights reserved

    Above and belowground community strategies respond to different global change drivers

    Get PDF
    Environmental changes alter the diversity and structure of communities. By shifting the range of species traits that will be successful under new conditions, environmental drivers can also dramatically impact ecosystem functioning and resilience. Above and belowground communities jointly regulate whole-ecosystem processes and responses to change, yet they are frequently studied separately. To determine whether these communities respond similarly to environmental changes, we measured taxonomic and trait-based responses of plant and soil microbial communities to four years of experimental warming and nitrogen deposition in a temperate grassland. Plant diversity responded strongly to N addition, whereas soil microbial communities responded primarily to warming, likely via an associated decrease in soil moisture. These above and belowground changes were associated with selection for more resource-conservative plant and microbe growth strategies, which reduced community functional diversity. Functional characteristics of plant and soil microbial communities were weakly correlated (P = 0.07) under control conditions, but not when above or belowground communities were altered by either global change driver. These results highlight the potential for global change drivers operating simultaneously to have asynchronous impacts on above and belowground components of ecosystems. Assessment of a single ecosystem component may therefore greatly underestimate the whole-system impact of global environmental changes

    Impact on soil degradation factors of changes in rain intensity patterns in southern Spain

    Get PDF
    In southern of Spain, the torrential nature of the rainfalls alters the soil water availability for vegetation and, consequently, its spatially and temporally pattern. This fact, combined with the current global warming, raises a modification of the eco-geomorphological processes dynamics in Mediterranean areas

    Resistance of microbial and soil properties to warming treatment seven years after boreal fire

    Get PDF
    Boreal forests store a large fraction of global terrestrial carbon and are susceptible to environmental change, particularly rising temperatures and increased fire frequency. These changes have the potential to drive positive feedbacks between climate warming and the boreal carbon cycle. Because few studies have examined the warming response of boreal ecosystems recovering from fire, we established a greenhouse warming experiment near Delta Junction, Alaska, seven years after a 1999 wildfire. We hypothesized that experimental warming would increase soil CO2 efflux, stimulate nutrient mineralization, and alter the composition and function of soil fungal communities. Although our treatment resulted in 1.20 °C soil warming, we found little support for our hypothesis. Only the activities of cellulose- and chitin-degrading enzymes increased significantly by 15% and 35%, respectively, and there were no changes in soil fungal communities. Warming resulted in drier soils, but the corresponding change in soil water potential was probably not sufficient to limit microbial activity. Rather, the warming response of this soil may be constrained by depletion of labile carbon substrates resulting from combustion and elevated soil temperatures in the years after the 1999 fire. We conclude that positive feedbacks between warming and the microbial release of soil carbon are weak in boreal ecosystems lacking permafrost. Since permafrost-free soils underlie 45–60% of the boreal zone, our results should be useful for modeling the warming response during recovery from fire in a large fraction of the boreal forest

    Increased CO<sub>2</sub> loss from vegetated drained lake tundra ecosystems due to flooding

    Get PDF
    Tundra ecosystems are especially sensitive to climate change, which is particularly rapid in high northern latitudes resulting in significant alterations in temperature and soil moisture. Numerous studies have demonstrated that soil drying increases the respiration loss from wet Arctic tundra. And, warming and drying of tundra soils are assumed to increase CO2 emissions from the Arctic. However, in this water table manipulation experiment (i.e., flooding experiment), we show that flooding of wet tundra can also lead to increased CO2 loss. Standing water increased heat conduction into the soil, leading to higher soil temperature, deeper thaw and, surprisingly, to higher CO2 loss in the most anaerobic of the experimental areas. The study site is located in a drained lake basin, and the soils are characterized by wetter conditions than upland tundra. In experimentally flooded areas, high wind speeds (greater than ~4 m s−1) increased CO2 emission rates, sometimes overwhelming the photosynthetic uptake, even during daytime. This suggests that CO2 efflux from C rich soils and surface waters can be limited by surface exchange processes. The comparison of the CO2 and CH4 emission in an anaerobic soil incubation experiment showed that in this ecosystem, CO2 production is an order of magnitude higher than CH4 production. Future increases in surface water ponding, linked to surface subsidence and thermokarst erosion, and concomitant increases in soil warming, can increase net C efflux from these arctic ecosystems

    Resilience of Organic versus Conventional Farming Systems in Tropical Africa: The Kenyan Experience

    Get PDF
    In Kenya, agriculture is largely carried out by smallholder farmers, in a mixed farming noncommercialised setting where application of synthetic fertilisers and pesticides is minimal. Agricultural production is low and constrained by declining soil fertility, pest and diseases and increasingly unpredictable weather due to global warming. This calls for more resilient farming systems
    corecore