1,191,530 research outputs found

    In situ N-doped graphene and Mo nanoribbon formation from Mo2Ti2C3 MXene monolayers

    Get PDF
    Since the advent of monolayered 2D transition metal carbide and nitrides (MXenes) in 2011, the number of different monolayer systems and the study thereof have been on the rise. Mo2Ti2C3 is one of the least studied MXenes and new insights to this material are of value to the field. Here, the stability of Mo2Ti2C3 under electron irradiation is investigated. A transmission electron microscope (TEM) is used to study the structural and elemental changes in situ. It is found that Mo2Ti2C3 is reasonably stable for the first 2 min of irradiation. However, structural changes occur thereafter, which trigger increasingly rapid and significant rearrangement. This results in the formation of pores and two new nanomaterials, namely, N-doped graphene membranes and Mo nanoribbons. The study provides insight into the stability of Mo2Ti2C3 monolayers against electron irradiation, which will allow for reliable future study of the material using TEM. Furthermore, these findings will facilitate further research in the rapidly growing field of electron beam driven chemistry and engineering of nanomaterials.Web of Scienceart. no. 190711

    Soft Condensed Matter Physics

    Full text link
    Soft condensed matter physics is the study of materials, such as fluids, liquid crystals, polymers, colloids, and emulsions, that are ``soft" to the touch. This article will review some properties, such as the dominance of entropy, that are unique to soft materials and some properties such as the interplay between broken-symmetry, dynamic mode structure, and topological defects that are common to all condensed matter systems but which are most easily studied in soft systems.Comment: 11 Pages, RevTeX, 7 postscript figures. To appear in Solid State Communication

    Optical supercavitation in soft-matter

    Full text link
    We investigate theoretically, numerically and experimentally nonlinear optical waves in an absorbing out-of-equilibrium colloidal material at the gelification transition. At sufficiently high optical intensity, absorption is frustrated and light propagates into the medium. The process is mediated by the formation of a matter-shock wave due to optically induced thermodiffusion, and largely resembles the mechanism of hydrodynamical supercavitation, as it is accompanied by a dynamic phase-transition region between the beam and the absorbing material.Comment: 4 pages, 5 figures, revised version: corrected typos and reference

    Stochastic resonance in soft matter systems: combined effects of static and dynamic disorder

    Full text link
    We study the impact of static and dynamic disorder on the phenomenon of stochastic resonance (SR) in a representative soft matter system. Due to their extreme susceptibility to weak perturbations soft matter systems appear to be excellent candidates for the observation of SR. Indeed, we derive generic SR equations from a polymer stabilized ferroelectric liquid crystal (LC) cell, which is a typical soft matter representative constituting one of the basic components in several electro-optic applications. We generalize these equations further in order to study an even broader class of qualitatively different systems, especially disclosing the influence of different types of static disorder and interaction ranges amongst LC molecules on the SR response. We determine the required conditions for the observation of SR in the examined system, and moreover, reveal that a random field type static disorder yields qualitatively different responses with respect to random dilution, random bond and spin glass universality classes. In particular, while the latter three decrease the level of dynamic disorder (Gaussian noise) warranting the optimal response, the former evokes exactly the opposite effect, hence increasing the optimal noise level that is needed to resonantly fine-tune the system's response in accordance with the weak deterministic electric field. These observations are shown to be independent of the system size and range of interactions, thus implying their general validity and potentially wide applicability also within other similar settings. We argue that soft matter systems might be particularly adequate as a base for different SR-based sensitive detectors and thus potent candidates for additional theoretical as well as experimental research in the presently outlined direction.Comment: 11 two-column pages, 6 figures; accepted for publication in Soft Matte

    Slow dynamics, aging, and glassy rheology in soft and living matter

    Full text link
    We explore the origins of slow dynamics, aging and glassy rheology in soft and living matter. Non-diffusive slow dynamics and aging in materials characterised by crowding of the constituents can be explained in terms of structural rearrangement or remodelling events that occur within the jammed state. In this context, we introduce the jamming phase diagram proposed by Liu and Nagel to understand the ergodic-nonergodic transition in these systems, and discuss recent theoretical attempts to explain the unusual, faster-than-exponential dynamical structure factors observed in jammed soft materials. We next focus on the anomalous rheology (flow and deformation behaviour) ubiquitous in soft matter characterised by metastability and structural disorder, and refer to the Soft Glassy Rheology (SGR) model that quantifies the mechanical response of these systems and predicts aging under suitable conditions. As part of a survey of experimental work related to these issues, we present x-ray photon correlation spectroscopy (XPCS) results of the aging of laponite clay suspensions following rejuvenation. We conclude by exploring the scientific literature for recent theoretical advances in the understanding of these models and for experimental investigations aimed at testing their predictions.Comment: 22 pages, 5 postscript figures; invited review aricle, to appear in special issue on soft matter in Solid State Communication
    corecore