16,807 research outputs found

    Seeking Optimum System Settings for Physical Activity Recognition on Smartwatches

    Full text link
    Physical activity recognition (PAR) using wearable devices can provide valued information regarding an individual's degree of functional ability and lifestyle. In this regards, smartphone-based physical activity recognition is a well-studied area. Research on smartwatch-based PAR, on the other hand, is still in its infancy. Through a large-scale exploratory study, this work aims to investigate the smartwatch-based PAR domain. A detailed analysis of various feature banks and classification methods are carried out to find the optimum system settings for the best performance of any smartwatch-based PAR system for both personal and impersonal models. To further validate our hypothesis for both personal (The classifier is built using the data only from one specific user) and impersonal (The classifier is built using the data from every user except the one under study) models, we tested single subject validation process for smartwatch-based activity recognition.Comment: 15 pages, 2 figures, Accepted in CVC'1

    Can smartwatches replace smartphones for posture tracking?

    Get PDF
    This paper introduces a human posture tracking platform to identify the human postures of sitting, standing or lying down, based on a smartwatch. This work develops such a system as a proof-of-concept study to investigate a smartwatch's ability to be used in future remote health monitoring systems and applications. This work validates the smartwatches' ability to track the posture of users accurately in a laboratory setting while reducing the sampling rate to potentially improve battery life, the first steps in verifying that such a system would work in future clinical settings. The algorithm developed classifies the transitions between three posture states of sitting, standing and lying down, by identifying these transition movements, as well as other movements that might be mistaken for these transitions. The system is trained and developed on a Samsung Galaxy Gear smartwatch, and the algorithm was validated through a leave-one-subject-out cross-validation of 20 subjects. The system can identify the appropriate transitions at only 10 Hz with an F-score of 0.930, indicating its ability to effectively replace smart phones, if needed

    Tap 'N' Shake: Gesture-based Smartwatch-Smartphone Communications System

    Get PDF
    Smartwatches have recently seen a surge in popularity, and the new technology presents a number of interesting opportunities and challenges, many of which have not been adequately dealt with by existing applications. Current smartwatch messaging systems fail to adequately address the problem of smartwatches requiring two-handed interactions. This paper presents Tap 'n' Shake, a novel gesture-based messaging system for Android smartwatches and smartphones addressing the problem of two-handed interactions by utilising various motion-gestures within the applications. The results of a user evaluation carried out with sixteen subjects demonstrated the usefulness and usability of using gestures over two-handed interactions for smartwatches. Additionally, the study provides insight into the types of gestures that subjects preferred to use for various actions in a smartwatch-smartphone messaging system

    Sensor-AssistedWeighted Average Ensemble Model for Detecting Major Depressive Disorder

    Get PDF
    The present methods of diagnosing depression are entirely dependent on self-report ratings or clinical interviews. Those traditional methods are subjective, where the individual may or may not be answering genuinely to questions. In this paper, the data has been collected using self-report ratings and also using electronic smartwatches. This study aims to develop a weighted average ensemble machine learning model to predict major depressive disorder (MDD) with superior accuracy. The data has been pre-processed and the essential features have been selected using a correlation-based feature selection method. With the selected features, machine learning approaches such as Logistic Regression, Random Forest, and the proposedWeighted Average Ensemble Model are applied. Further, for assessing the performance of the proposed model, the Area under the Receiver Optimization Characteristic Curves has been used. The results demonstrate that the proposed Weighted Average Ensemble model performs with better accuracy than the Logistic Regression and the Random Forest approaches

    Towards a Practical Pedestrian Distraction Detection Framework using Wearables

    Full text link
    Pedestrian safety continues to be a significant concern in urban communities and pedestrian distraction is emerging as one of the main causes of grave and fatal accidents involving pedestrians. The advent of sophisticated mobile and wearable devices, equipped with high-precision on-board sensors capable of measuring fine-grained user movements and context, provides a tremendous opportunity for designing effective pedestrian safety systems and applications. Accurate and efficient recognition of pedestrian distractions in real-time given the memory, computation and communication limitations of these devices, however, remains the key technical challenge in the design of such systems. Earlier research efforts in pedestrian distraction detection using data available from mobile and wearable devices have primarily focused only on achieving high detection accuracy, resulting in designs that are either resource intensive and unsuitable for implementation on mainstream mobile devices, or computationally slow and not useful for real-time pedestrian safety applications, or require specialized hardware and less likely to be adopted by most users. In the quest for a pedestrian safety system that achieves a favorable balance between computational efficiency, detection accuracy, and energy consumption, this paper makes the following main contributions: (i) design of a novel complex activity recognition framework which employs motion data available from users' mobile and wearable devices and a lightweight frequency matching approach to accurately and efficiently recognize complex distraction related activities, and (ii) a comprehensive comparative evaluation of the proposed framework with well-known complex activity recognition techniques in the literature with the help of data collected from human subject pedestrians and prototype implementations on commercially-available mobile and wearable devices
    corecore