16,807 research outputs found
Seeking Optimum System Settings for Physical Activity Recognition on Smartwatches
Physical activity recognition (PAR) using wearable devices can provide valued
information regarding an individual's degree of functional ability and
lifestyle. In this regards, smartphone-based physical activity recognition is a
well-studied area. Research on smartwatch-based PAR, on the other hand, is
still in its infancy. Through a large-scale exploratory study, this work aims
to investigate the smartwatch-based PAR domain. A detailed analysis of various
feature banks and classification methods are carried out to find the optimum
system settings for the best performance of any smartwatch-based PAR system for
both personal and impersonal models. To further validate our hypothesis for
both personal (The classifier is built using the data only from one specific
user) and impersonal (The classifier is built using the data from every user
except the one under study) models, we tested single subject validation process
for smartwatch-based activity recognition.Comment: 15 pages, 2 figures, Accepted in CVC'1
Can smartwatches replace smartphones for posture tracking?
This paper introduces a human posture tracking platform to identify the human postures of sitting, standing or lying down, based on a smartwatch. This work develops such a system as a proof-of-concept study to investigate a smartwatch's ability to be used in future remote health monitoring systems and applications. This work validates the smartwatches' ability to track the posture of users accurately in a laboratory setting while reducing the sampling rate to potentially improve battery life, the first steps in verifying that such a system would work in future clinical settings. The algorithm developed classifies the transitions between three posture states of sitting, standing and lying down, by identifying these transition movements, as well as other movements that might be mistaken for these transitions. The system is trained and developed on a Samsung Galaxy Gear smartwatch, and the algorithm was validated through a leave-one-subject-out cross-validation of 20 subjects. The system can identify the appropriate transitions at only 10 Hz with an F-score of 0.930, indicating its ability to effectively replace smart phones, if needed
Tap 'N' Shake: Gesture-based Smartwatch-Smartphone Communications System
Smartwatches have recently seen a surge in popularity, and the new technology presents a number of interesting opportunities and challenges, many of which have not been adequately dealt with by existing applications. Current smartwatch messaging systems fail to adequately address the problem of smartwatches requiring two-handed interactions. This paper presents Tap 'n' Shake, a novel gesture-based messaging system for Android smartwatches and smartphones addressing the problem of two-handed interactions by utilising various motion-gestures within the applications. The results of a user evaluation carried out with sixteen subjects demonstrated the usefulness and usability of using gestures over two-handed interactions for smartwatches. Additionally, the study provides insight into the types of gestures that subjects preferred to use for various actions in a smartwatch-smartphone messaging system
Sensor-AssistedWeighted Average Ensemble Model for Detecting Major Depressive Disorder
The present methods of diagnosing depression are entirely dependent on self-report
ratings or clinical interviews. Those traditional methods are subjective, where the individual may
or may not be answering genuinely to questions. In this paper, the data has been collected using
self-report ratings and also using electronic smartwatches. This study aims to develop a weighted
average ensemble machine learning model to predict major depressive disorder (MDD) with superior
accuracy. The data has been pre-processed and the essential features have been selected using a
correlation-based feature selection method. With the selected features, machine learning approaches
such as Logistic Regression, Random Forest, and the proposedWeighted Average Ensemble Model are
applied. Further, for assessing the performance of the proposed model, the Area under the Receiver
Optimization Characteristic Curves has been used. The results demonstrate that the proposed
Weighted Average Ensemble model performs with better accuracy than the Logistic Regression and
the Random Forest approaches
Towards a Practical Pedestrian Distraction Detection Framework using Wearables
Pedestrian safety continues to be a significant concern in urban communities
and pedestrian distraction is emerging as one of the main causes of grave and
fatal accidents involving pedestrians. The advent of sophisticated mobile and
wearable devices, equipped with high-precision on-board sensors capable of
measuring fine-grained user movements and context, provides a tremendous
opportunity for designing effective pedestrian safety systems and applications.
Accurate and efficient recognition of pedestrian distractions in real-time
given the memory, computation and communication limitations of these devices,
however, remains the key technical challenge in the design of such systems.
Earlier research efforts in pedestrian distraction detection using data
available from mobile and wearable devices have primarily focused only on
achieving high detection accuracy, resulting in designs that are either
resource intensive and unsuitable for implementation on mainstream mobile
devices, or computationally slow and not useful for real-time pedestrian safety
applications, or require specialized hardware and less likely to be adopted by
most users. In the quest for a pedestrian safety system that achieves a
favorable balance between computational efficiency, detection accuracy, and
energy consumption, this paper makes the following main contributions: (i)
design of a novel complex activity recognition framework which employs motion
data available from users' mobile and wearable devices and a lightweight
frequency matching approach to accurately and efficiently recognize complex
distraction related activities, and (ii) a comprehensive comparative evaluation
of the proposed framework with well-known complex activity recognition
techniques in the literature with the help of data collected from human subject
pedestrians and prototype implementations on commercially-available mobile and
wearable devices
- …
