130,373 research outputs found
Scenarios for the development of smart grids in the UK: literature review
Smart grids are expected to play a central role in any transition to a low-carbon energy future, and much research is currently underway on practically every area of smart grids. However, it is evident that even basic aspects such as theoretical and operational definitions, are yet to be agreed upon and be clearly defined. Some aspects (efficient management of supply, including intermittent supply, two-way communication between the producer and user of electricity, use of IT technology to respond to and manage demand, and ensuring safe and secure electricity distribution) are more commonly accepted than others (such as smart meters) in defining what comprises a smart grid.
It is clear that smart grid developments enjoy political and financial support both at UK and EU levels, and from the majority of related industries. The reasons for this vary and include the hope that smart grids will facilitate the achievement of carbon reduction targets, create new employment opportunities, and reduce costs relevant to energy generation (fewer power stations) and distribution (fewer losses and better stability). However, smart grid development depends on additional factors, beyond the energy industry. These relate to issues of public acceptability of relevant technologies and associated risks (e.g. data safety, privacy, cyber security), pricing, competition, and regulation; implying the involvement of a wide range of players such as the industry, regulators and consumers.
The above constitute a complex set of variables and actors, and interactions between them. In order to best explore ways of possible deployment of smart grids, the use of scenarios is most adequate, as they can incorporate several parameters and variables into a coherent storyline. Scenarios have been previously used in the context of smart grids, but have traditionally focused on factors such as economic growth or policy evolution. Important additional socio-technical aspects of smart grids emerge from the literature review in this report and therefore need to be incorporated in our scenarios. These can be grouped into four (interlinked) main categories: supply side aspects, demand side aspects, policy and regulation, and technical aspects.
Smart grids for rural conditions and e-mobility - Applying power routers, batteries and virtual power plants
Significant reductions of greenhouse gas emission by use of renewable energy sources belong to the common targets of the European Union. Smart grids address intelligent use and integration of conventional and renewable generation in combination with controllable loads and storages. Two special aspects have also to be considered for smart grids in future: rural conditions and electric vehicles. Both, the increasing share of renewable energy sources and a rising demand for charging power by electrical vehicles lead to new challenges of network stability (congestion, voltage deviation), especially in rural distribution grids. This paper describes two lighthouse projects in Europe (“Well2Wheel” and “Smart Rural Grid”) dealing with these topics. The link between these projects is the implementation of the same virtual power plant technology and the approach of cellular grid cells. Starting with an approach for the average energy balance in 15 minutes intervals in several grid cells in the first project, the second project even allows the islanded operation of such cells as a microgrid. The integration of renewable energy sources into distribution grids primary takes place in rural areas. The lighthouse project “Smart Rural Grid”, which is founded by the European Union, demonstrates possibilities to use the existing distribution system operator infrastructure more effectively by applying an optimised and scheduled operation of the assets and using intelligent distribution power routers, called IDPR. IDPR are active power electronic devices operating at low voltage in distribution grids aiming to reduce losses due to unbalanced loads and enabling active voltage and reactive power control. This allows a higher penetration of renewable energy sources in existing grids without investing in new lines and transformers. Integrated in a virtual power plant and combined with batteries, the IDPR also allows a temporary islanded mode of grid cells.
Both projects show the potential of avoiding or postponing investments in new primary infrastructure like cables, transformers and lines by using a forward-looking operation which controls generators, loads and batteries (mobile and stationary) by using new grid assets like power routers.
While primary driven by physical restrictions as voltage-band violations and energy balance, these cells also define and allow local smart markets. In consequence the distribution system operators could avoid direct control access by giving an incentive to the asset owners by local price signals according to the grid situation and forecasted congestions.Peer ReviewedPostprint (published version
Modeling and Recognition of Smart Grid Faults by a Combined Approach of Dissimilarity Learning and One-Class Classification
Detecting faults in electrical power grids is of paramount importance, either
from the electricity operator and consumer viewpoints. Modern electric power
grids (smart grids) are equipped with smart sensors that allow to gather
real-time information regarding the physical status of all the component
elements belonging to the whole infrastructure (e.g., cables and related
insulation, transformers, breakers and so on). In real-world smart grid
systems, usually, additional information that are related to the operational
status of the grid itself are collected such as meteorological information.
Designing a suitable recognition (discrimination) model of faults in a
real-world smart grid system is hence a challenging task. This follows from the
heterogeneity of the information that actually determine a typical fault
condition. The second point is that, for synthesizing a recognition model, in
practice only the conditions of observed faults are usually meaningful.
Therefore, a suitable recognition model should be synthesized by making use of
the observed fault conditions only. In this paper, we deal with the problem of
modeling and recognizing faults in a real-world smart grid system, which
supplies the entire city of Rome, Italy. Recognition of faults is addressed by
following a combined approach of multiple dissimilarity measures customization
and one-class classification techniques. We provide here an in-depth study
related to the available data and to the models synthesized by the proposed
one-class classifier. We offer also a comprehensive analysis of the fault
recognition results by exploiting a fuzzy set based reliability decision rule
Detection of Non-Technical Losses in Smart Distribution Networks: a Review
With the advent of smart grids, distribution utilities have
initiated a large deployment of smart meters on the premises of the
consumers. The enormous amount of data obtained from the consumers
and communicated to the utility give new perspectives and possibilities
for various analytics-based applications. In this paper the current
smart metering-based energy-theft detection schemes are reviewed and
discussed according to two main distinctive categories: A) system statebased,
and B) arti cial intelligence-based.Comisión Europea FP7-PEOPLE-2013-IT
Smart Regulation for Smart Grids
Climate change and security of supply policies are driving us towards a decarbonization of the electricity system. It is in this context that smart grids are being discussed. Electricity grids, and hence their regulatory frameworks, have a key role to play in facilitating this transformation of the electricity system. In this paper, we analyze what is expected from grids and what are the regulatory tools that could be used to align the incentives of grid companies and grid users with what is expected from them. We look at three empirical cases to see which regulatory tools have already been applied and find that smart grids need a coherent regulatory framework addressing grid services, grid technology innovation and grid user participation to the ongoing grid innovation. The paper concludes with what appears to be a smart regulation for smart grids.Regulation, innovation, electricity, grids, transmission, distribution
- …
