824,503 research outputs found
Fingertip skin models for analysis of the haptic perception of textiles
This paper presents finite element models of the fingertip skin which have been created to simulate the contact of textile objects with the skin to gain a better understanding of the perception of textiles through the skin, the so-called hand of textiles. Many objective and subjective techniques have already been developed for analysing the hand of textiles; however, none of them provide exact overall information concerning the sensation of textiles through the skin. As the human skin is a complex heterogeneous hyperelastic body composed of many particles, some simplifications had to be made at the early stage of building the models; however, their utilitarian value was maintained. The models relate only to mechanical loading of the skin. They predict a low deformation of the fingertip skin under the pressure of virtual heterogeneous material: acrylic, coarse wool, and steel
Universal in vivo Textural Model for Human Skin based on Optical Coherence Tomograms
Currently, diagnosis of skin diseases is based primarily on visual pattern
recognition skills and expertise of the physician observing the lesion. Even
though dermatologists are trained to recognize patterns of morphology, it is
still a subjective visual assessment. Tools for automated pattern recognition
can provide objective information to support clinical decision-making.
Noninvasive skin imaging techniques provide complementary information to the
clinician. In recent years, optical coherence tomography has become a powerful
skin imaging technique. According to specific functional needs, skin
architecture varies across different parts of the body, as do the textural
characteristics in OCT images. There is, therefore, a critical need to
systematically analyze OCT images from different body sites, to identify their
significant qualitative and quantitative differences. Sixty-three optical and
textural features extracted from OCT images of healthy and diseased skin are
analyzed and in conjunction with decision-theoretic approaches used to create
computational models of the diseases. We demonstrate that these models provide
objective information to the clinician to assist in the diagnosis of
abnormalities of cutaneous microstructure, and hence, aid in the determination
of treatment. Specifically, we demonstrate the performance of this methodology
on differentiating basal cell carcinoma (BCC) and squamous cell carcinoma (SCC)
from healthy tissue
Origin of the neutron skin thickness of 208Pb in nuclear mean-field models
We study whether the neutron skin thickness (NST) of 208Pb originates from
the bulk or from the surface of the nucleon density distributions, according to
the mean-field models of nuclear structure, and find that it depends on the
stiffness of the nuclear symmetry energy. The bulk contribution to NST arises
from an extended sharp radius of neutrons, whereas the surface contribution
arises from different widths of the neutron and proton surfaces. Nuclear models
where the symmetry energy is stiff, as typical relativistic models, predict a
bulk contribution in NST of 208Pb about twice as large as the surface
contribution. In contrast, models with a soft symmetry energy like common
nonrelativistic models predict that NST of 208Pb is divided similarly into bulk
and surface parts. Indeed, if the symmetry energy is supersoft, the surface
contribution becomes dominant. We note that the linear correlation of NST of
208Pb with the density derivative of the nuclear symmetry energy arises from
the bulk part of NST. We also note that most models predict a mixed-type
(between halo and skin) neutron distribution for 208Pb. Although the halo-type
limit is actually found in the models with a supersoft symmetry energy, the
skin-type limit is not supported by any mean-field model. Finally, we compute
parity-violating electron scattering in the conditions of the 208Pb parity
radius experiment (PREX) and obtain a pocket formula for the parity-violating
asymmetry in terms of the parameters that characterize the shape of the 208Pb
nucleon densities.Comment: 11 pages, 4 figures; minor stylistic changes in text, new Ref. [56]
added (new measurement of the neutron skin thickness of 208Pb
Neutron-skin thickness of finite nuclei in relativistic mean-field models with chiral limits
We study several structure properties of finite nuclei using relativistic
mean-field Lagrangians constructed according to the Brown-Rho scaling due to
the chiral symmetry restoration at high densities. The models are consistent
with current experimental constraints for the equations of state of symmetric
matter at both normal and supra-normal densities and of asymmetric matter at
sub-saturation densities. It is shown that these models can successfully
describe the binding energies and charge radii of finite nuclei. Compared to
calculations with usual relativistic mean-field models, these models give a
reduced thickness of neutron skin in ^{208}Pb between 0.17 fm and 0.21 fm. The
reduction of the predicted neutron skin thickness is found to be due to not
only the softening of the symmetry energy but also the scaling property of
meson required by the partial restoration of chiral symmetry.Comment: Accepted version to appear in PRC (2007
Comparison of synthetic membranes in the development of an in vitro feeding system for Dermanyssus gallinae
Although artificial feeding models for the poultry red mite (Dermanyssus gallinae) most frequently use biological membranes consisting of day-old chick skin, there are ethical considerations associated with the use of skin. The few studies reported in the literature that have investigated the use of synthetic membranes to feed D. gallinae in vitro have reported limited success. The current study describes an investigation into the use of synthetic membranes made from either Nescofilm® or rayon and silicone, used either alone or in combination with different feather or skin extracts, as well as the use of capillary tubes. In all, 12 different treatments were used, and the feeding rate of D. gallinae was compared to that of day-old chick skin. Allowing mites to feed on a membrane consisting of Nescofilm with a skin extract resulted in the highest proportion of mites feeding (32.3%), which was not significantly different to the feeding rate of mites on day-old chick skin (38.8%). This study confirms that synthetic membranes can be used to feed D. gallinae artificially. Further optimization of the membrane and mite storage conditions is still necessary, but the study demonstrates a proof of concept
- …
