2,095,342 research outputs found
Land Cover Site Selection
The purpose of the resource is to determine the major land cover type at a Land Cover Sample Site. Educational levels: Middle school, High school
Status of the TMT site evaluation process
The Thirty Meter Telescope (TMT) is currently acquiring site characterization data at ve candidate sites.
The site testing equipment includes instruments for measuring the seeing and seeing proles, meteorological
conditions, cloudiness, precipitable water vapor, etc. All site testing equipment and data have gone through
extensive calibrations and verications in order to assure that a reliable and quantitative comparison between
the candidate sites will be possible. Here, we present an update on the status of the site selection work, the
equipment characterizations and the resulting accuracies of our site selection data
Wind turbine siting: A summary of the state of the art
The process of siting large wind turbines may be divided into two broad steps: site selection, and site evaluation. Site selection is the process of locating windy sites where wind energy development shows promise of economic viability. Site evaluation is the process of determining in detail for a given site the economic potential of the site. The state of the art in the first aspect of siting, site selection is emphasized. Several techniques for assessing the wind resource were explored or developed in the Federal Wind Energy Program. Local topography and meteorology will determine which of the techniques should be used in locating potential sites. None of the techniques can do the job alone, none are foolproof, and all require considerable knowledge and experience to apply correctly. Therefore, efficient siting requires a strategy which is founded on broad based application of several techniques without relying solely on one narrow field of expertise
Specification, siting and selection of large WECS prototypes
The development of large-scale windpowered systems is outlined. Topics discussed include: prototype specifications development, site selection process, and selection of prototype contractor
Lunar resource evaluation and mine site selection
Two scenarios in this evaluation of lunar mineral resources and the selection of possible mining and processing sites are considered. The first scenario assumes that no new surface or near-surface data will be available before site selection (presumably one of the Apollo sites). The second scenario assumes that additional surface geology data will have been obtained by a lunar orbiter mission, an unmanned sample return mission (or missions), and followup manned missions. Regardless of the scenario, once a potentially favorable mine site has been identified, a minimum amount of fundamental data is needed to assess the resources at that site and to evaluate its suitability for mining and downstream processing. Since much of the required data depends on the target mineral(s), information on the resource, its beneficiation, and the refining, smelting, and fabricating processes must be factored into the evaluation. The annual capacity and producing lifetime of the mine and its associated processing plant must be estimated before the resource reserves can be assessed. The available market for the product largely determines the capacity and lifetime of the mine. The Apollo 17 site is described as a possible mining site. The use of new sites is briefly addressed
Chromosome segregation impacts on cell growth and division site selection in Corynebacterium glutamicum.
Spatial and temporal regulation of bacterial cell division is imperative for the production of viable offspring. In many rod-shaped bacteria, regulatory systems such as the Min system and nucleoid occlusion ensure the high fidelity of midcell divisome positioning. However, regulation of division site selection in bacteria lacking recognizable Min and nucleoid occlusion remains less well understood. Here, we describe one such rod-shaped organism, Corynebacterium glutamicum, which does not always place the division septum precisely at midcell. Here we now show at single cell level that cell growth and division site selection are spatially and temporally regulated by chromosome segregation. Mutants defective in chromosome segregation have more variable cell growth and aberrant placement of the division site. In these mutants, division septa constrict over and often guillotine the nucleoid, leading to nonviable, DNA-free cells. Our results suggest that chromosome segregation or some nucleoid associated factor influences growth and division site selection in C. glutamicum. Understanding growth and regulation of C. glutamicum cells will also be of importance to develop strains for industrial production of biomolecules, such as amino acids
Apollo 16 Site Selection
The selection is discussed of the Descartes landing site for the Apollo 16 flight for direct sampling of highland materials that would be compositionally different from previous samples. The lessons learned in this site selection that should be considered in future site selection are listed
Evaluation of the 1986-1987 radiata pine clonal trials at Forest Research, New Zealand : a thesis presented in partial fulfilment of the requirements for the degree of Master in Applied Science at Massey University
Clonal forestry, the establishment of plantations using tested clones, is highly sought after by the forestry industry in New Zealand and worldwide. Clonal testing is a vital element in the process leading to clonal forestry. Two clonal trials established in 1986 and 1987 by the Forest Research Institute with juvenile ortet material have been analysed in this study. The mating design in the 1986 clones-in-family trial was single-pair crossing with amplification of the clones by fascicle cuttings. It was replicated over two sites, and the trait analysed was diameter at 1.40 m height at ages 4,7, and 10 years. The estimation of additive, non-additive and genetic variances showed a high proportion of non-additive variance compared with the additive variance at one of the sites, whereas the proportion was less important at the other site. The high non-additive component of variance can be due to important dominance or epistasis, or to C-effects confounded with the non-additive variance. This trend was similar for all three ages. Realised genetic gains were obtained from selection of clones at age 10 years for clonal deployment and breeding. For clonal deployment, realised gains were high at both sites (13% and 16%). The gains were similar at both sites provided selection was based on performance values at the site, and not on indirect selection on performance of clones at the other site. Realised gains for selection at age 10 based on the performance of clones on combined sites (10% and 13%) were less than the maximum gain obtained at each individual site. Gains based on information from both sites (10% and 12% at respective sites) were more stable than those selections at any one site. For breeding, the level of gain was significantly inferior than for clonal deployment (4% and 8%), especially when the number of clones per family was restricted to one (2% and 4%). Realised gain on combined-site selection yielded less gain than direct selection at the optimum site for selection (1% and 2%). The presence of genotype x environment interaction emphasised the need to test clones in several sites if stability of performance is desired. It is possible to obtain gain from selections made at an early age, but selections made for breeding at the age of final assessment yielded greater expected total gain and gain per unit time. The mating design in the 1987 clones-in-family trial was a 3 x 3 disconnected factorial. The trial was established on a single site and the trait analysed was percentage of Dothistroma needle infection at ages 3,4 and 7years. The mating design allowed estimation of additive, dominance and epistasis variances, which were overestimated for the lack of replication over sites. In this trial measured for Dothistroma resistance, the additive variance was the major component of the genetic variance at both ages. The evolution of components of genetic variance was confounded with the level of Dothistroma infection. The analysis of these trials indicated the need to improve the mating and field designs to improve the accuracy in the estimation of genetic parameters, highlights the importance of annual or biennual measurements to determine trends of those parameters over time, and showed the difference in gains obtained from selection for breeding and clonal deployment for early selection and selection at the age of final assessment. Accuracy in the estimation of genetic parameters can be achieved using factorial mating designs together with serial propagation to reduce the incidence of C effects, and with replication over several sites. Further considerations have to be made to find the most appropriate field and statistical design, but alpha designs are a possibility to explore. Investment in a series of carefully planned clonal trials is fundamental to the future of clonal forestry in radiata pine
Fisher-Wright model with deterministic seed bank and selection
Seed banks are a common characteristics to many plant species, which allow
storage of genetic diversity in the soil as dormant seeds for various periods
of time. We investigate an above-ground population following a Fisher-Wright
model with selection coupled with a deterministic seed bank assuming the length
of the seed bank is kept constant and the number of seeds is large. To assess
the combined impact of seed banks and selection on genetic diversity, we derive
a general diffusion model. The applied techniques outline a path of
approximating a stochastic delay differential equation by an appropriately
rescaled stochastic differential equation, which is a common issue in
statistical physics. We compute the equilibrium solution of the site-frequency
spectrum and derive the times to fixation of an allele with and without
selection. Finally, it is demonstrated that seed banks enhance the effect of
selection onto the site-frequency spectrum while slowing down the time until
the mutation-selection equilibrium is reached
- …
