72,750 research outputs found

    Coulomb blockade in a Si channel gated by an Al single-electron transistor

    Full text link
    We incorporate an Al-AlO_x-Al single-electron transistor as the gate of a narrow (~100 nm) metal-oxide-semiconductor field-effect transistor (MOSFET). Near the MOSFET channel conductance threshold, we observe oscillations in the conductance associated with Coulomb blockade in the channel, revealing the formation of a Si single-electron transistor. Abrupt steps present in sweeps of the Al transistor conductance versus gate voltage are correlated with single-electron charging events in the Si transistor, and vice versa. Analysis of these correlations using a simple electrostatic model demonstrates that the two single-electron transistor islands are closely aligned, with an inter-island capacitance approximately equal to 1/3 of the total capacitance of the Si transistor island, indicating that the Si transistor is strongly coupled to the Al transistor.Comment: 3 pages, 4 figures, 1 table; typos corrected, minor clarifications added; published in AP

    First-principles modelling of molecular single-electron transistors

    Full text link
    We present a first-principles method for calculating the charging energy of a molecular single-electron transistor operating in the Coulomb blockade regime. The properties of the molecule are modeled using density-functional theory, the environment is described by a continuum model, and the interaction between the molecule and the environment are included through the Poisson equation. The model is used to calculate the charge stability diagrams of a benzene and C60_{60} molecular single-electron transistor

    Fully Overheated Single-Electron Transistor

    Full text link
    We consider the fully overheated single-electron transistor, where the heat balance is determined entirely by electron transfers. We find three distinct transport regimes corresponding to cotunneling, single-electron tunneling, and a competition between the two. We find an anomalous sensitivity to temperature fluctuations at the crossover between the two latter regimes that manifests in an exceptionally large Fano factor of current noise.Comment: 6 pages, 3 figures, includes Appendi

    Mixing with the radiofrequency single-electron transistor

    Full text link
    By configuring a radio-frequency single-electron transistor as a mixer, we demonstrate a unique implementation of this device, that achieves good charge sensitivity with large bandwidth about a tunable center frequency. In our implementation we achieve a measurement bandwidth of 16 MHz, with a tunable center frequency from 0 to 1.2 GHz, demonstrated with the transistor operating at 300 mK. Ultimately this device is limited in center frequency by the RC time of the transistor's center island, which for our device is ~ 1.6 GHz, close to the measured value. The measurement bandwidth is determined by the quality factor of the readout tank circuit.Comment: Submitted to APL september 200

    Tunable Graphene Single Electron Transistor

    Full text link
    We report electronic transport experiments on a graphene single electron transistor. The device consists of a graphene island connected to source and drain electrodes via two narrow graphene constrictions. It is electrostatically tunable by three lateral graphene gates and an additional back gate. The tunneling coupling is a strongly nonmonotonic function of gate voltage indicating the presence of localized states in the barriers. We investigate energy scales for the tunneling gap, the resonances in the constrictions and for the Coulomb blockade resonances. From Coulomb diamond measurements in different device configurations (i.e. barrier configurations) we extract a charging energy of 3.4 meV and estimate a characteristic energy scale for the constriction resonances of 10 meV.Comment: 6 pages and 5 figure

    A tunable, dual mode field-effect or single electron transistor

    Full text link
    A dual mode device behaving either as a field-effect transistor or a single electron transistor (SET) has been fabricated using silicon-on-insulator metal oxide semiconductor technology. Depending on the back gate polarisation, an electron island is accumulated under the front gate of the device (SET regime), or a field-effect transistor is obtained by pinching off a bottom channel with a negative front gate voltage. The gradual transition between these two cases is observed. This dual function uses both vertical and horizontal tunable potential gradients in non-overlapped silicon-on-insulator channel
    corecore