572,355 research outputs found
Single-photon Optomechanics
Optomechanics experiments are rapidly approaching the regime where the
radiation pressure of a single photon displaces the mechanical oscillator by
more than its zero-point uncertainty. We show that in this limit the power
spectrum has multiple sidebands and that the cavity response has several
resonances in the resolved-sideband limit. Using master-equation simulations,
we also study the crossover from the weak-coupling many-photon to the
single-photon strong-coupling regime. Finally, we find non-Gaussian
steady-states of the mechanical oscillator when multi-photon transitions are
resonant. Our study provides the tools to detect and take advantage of this
novel regime of optomechanics.Comment: 4 pages, 4 figure
Single-photon tunneling
Strong evidence of a single-photon tunneling effect, a direct analog of
single-electron tunneling, has been obtained in the measurements of light
tunneling through individual subwavelength pinholes in a thick gold film
covered with a layer of polydiacetylene. The transmission of some pinholes
reached saturation because of the optical nonlinearity of polydiacetylene at a
very low light intensity of a few thousands photons per second. This result is
explained theoretically in terms of "photon blockade", similar to the Coulomb
blockade phenomenon observed in single-electron tunneling experiments. The
single-photon tunneling effect may find many applications in the emerging
fields of quantum communication and information processing.Comment: 4 pages, 4figure
Near-unity coupling efficiency of a quantum emitter to a photonic-crystal waveguide
A quantum emitter efficiently coupled to a nanophotonic waveguide constitutes
a promising system for the realization of single-photon transistors,
quantum-logic gates based on giant single-photon nonlinearities, and high
bit-rate deterministic single-photon sources. The key figure of merit for such
devices is the -factor, which is the probability for an emitted single
photon to be channeled into a desired waveguide mode. We report on the
experimental achievement of for a quantum dot
coupled to a photonic-crystal waveguide, corresponding to a single-emitter
cooperativity of . This constitutes a nearly ideal
photon-matter interface where the quantum dot acts effectively as a 1D
"artificial" atom, since it interacts almost exclusively with just a single
propagating optical mode. The -factor is found to be remarkably robust
to variations in position and emission wavelength of the quantum dots. Our work
demonstrates the extraordinary potential of photonic-crystal waveguides for
highly efficient single-photon generation and on-chip photon-photon
interaction
On the relationship between pump chirp and single-photon chirp in spontaneous parametric downconversion
We study the chronocyclic character, i.e. the joint temporal and spectral
properties, of the single-photon constituents of photon pairs generated by
spontaneous parametric down conversion. In particular we study how single
photon properties, including purity and single-photon chirp, depend on photon
pair properties, including the type of signal-idler spectral and correlations
and the level of pump chirp.Comment: 13 pages, 6 figure
Linear-optical processing cannot increase photon efficiency
We answer the question whether linear-optical processing of the states
produced by one or multiple imperfect single-photon sources can improve the
single-photon fidelity. This processing can include arbitrary interferometers,
coherent states, feedforward, and conditioning on results of detections. We
show that without introducing multiphoton components, the single-photon
fraction in any of the single-mode states resulting from such processing cannot
be made to exceed the efficiency of the best available photon source. If
multiphoton components are allowed, the single-photon fidelity cannot be
increased beyond 1/2. We propose a natural general definition of the
quantum-optical state efficiency, and show that it cannot increase under
linear-optical processing.Comment: 4 pages, 3 figure
Single-photon emitting diode in silicon carbide
Electrically driven single-photon emitting devices have immediate
applications in quantum cryptography, quantum computation and single-photon
metrology. Mature device fabrication protocols and the recent observations of
single defect systems with quantum functionalities make silicon carbide (SiC)
an ideal material to build such devices. Here, we demonstrate the fabrication
of bright single photon emitting diodes. The electrically driven emitters
display fully polarized output, superior photon statistics (with a count rate
of 300 kHz), and stability in both continuous and pulsed modes, all at room
temperature. The atomic origin of the single photon source is proposed. These
results provide a foundation for the large scale integration of single photon
sources into a broad range of applications, such as quantum cryptography or
linear optics quantum computing.Comment: Main: 10 pages, 6 figures. Supplementary Information: 6 pages, 6
figure
- …
