660,365 research outputs found

    Algorithmic simplification of knot diagrams: new moves and experiments

    Get PDF
    This note has an experimental nature and contains no new theorems. We introduce certain moves for classical knot diagrams that for all the very many examples we have tested them on give a monotonic complete simplification. A complete simplification of a knot diagram D is a sequence of moves that transform D into a diagram D' with the minimal possible number of crossings for the isotopy class of the knot represented by D. The simplification is monotonic if the number of crossings never increases along the sequence. Our moves are certain Z1, Z2, Z3 generalizing the classical Reidemeister moves R1, R2, R3, and another one C (together with a variant) aimed at detecting whether a knot diagram can be viewed as a connected sum of two easier ones. We present an accurate description of the moves and several results of our implementation of the simplification procedure based on them, publicly available on the web.Comment: 38 pages, 33 figure

    Geodesic-Preserving Polygon Simplification

    Full text link
    Polygons are a paramount data structure in computational geometry. While the complexity of many algorithms on simple polygons or polygons with holes depends on the size of the input polygon, the intrinsic complexity of the problems these algorithms solve is often related to the reflex vertices of the polygon. In this paper, we give an easy-to-describe linear-time method to replace an input polygon P\mathcal{P} by a polygon P\mathcal{P}' such that (1) P\mathcal{P}' contains P\mathcal{P}, (2) P\mathcal{P}' has its reflex vertices at the same positions as P\mathcal{P}, and (3) the number of vertices of P\mathcal{P}' is linear in the number of reflex vertices. Since the solutions of numerous problems on polygons (including shortest paths, geodesic hulls, separating point sets, and Voronoi diagrams) are equivalent for both P\mathcal{P} and P\mathcal{P}', our algorithm can be used as a preprocessing step for several algorithms and makes their running time dependent on the number of reflex vertices rather than on the size of P\mathcal{P}

    Tax Simplification Through Cumulative Averaging

    Get PDF

    Progressive Simplification of Polygonal Curves

    Get PDF
    Simplifying polygonal curves at different levels of detail is an important problem with many applications. Existing geometric optimization algorithms are only capable of minimizing the complexity of a simplified curve for a single level of detail. We present an O(n3m)O(n^3m)-time algorithm that takes a polygonal curve of n vertices and produces a set of consistent simplifications for m scales while minimizing the cumulative simplification complexity. This algorithm is compatible with distance measures such as the Hausdorff, the Fr\'echet and area-based distances, and enables simplification for continuous scaling in O(n5)O(n^5) time. To speed up this algorithm in practice, we present new techniques for constructing and representing so-called shortcut graphs. Experimental evaluation of these techniques on trajectory data reveals a significant improvement of using shortcut graphs for progressive and non-progressive curve simplification, both in terms of running time and memory usage.Comment: 20 pages, 20 figure

    Simplification and Saving

    Get PDF
    The daunting complexity of important financial decisions can lead to procrastination. We evaluate a low-cost intervention that substantially simplifies the retirement savings plan participation decision. Individuals received an opportunity to enroll in a retirement savings plan at a pre-selected contribution rate and asset allocation, allowing them to collapse a multidimensional problem into a binary choice between the status quo and the pre-selected alternative. The intervention increases plan enrollment rates by 10 to 20 percentage points. We find that a similar intervention can be used to increase contribution rates among employees who are already participating in a savings plan.
    corecore