2,541,000 research outputs found

    Gravitational Radiation from Nonaxisymmetric Instability in a Rotating Star

    Get PDF
    We present the first calculations of the gravitational radiation produced by nonaxisymmetric dynamical instability in a rapidly rotating compact star. The star deforms into a bar shape, shedding 4%\sim 4\% of its mass and 17%\sim 17\% of its angular momentum. The gravitational radiation is calculated in the quadrupole approximation. For a mass M1.4M \sim 1.4 M_{\odot} and radius R10R \sim 10 km, the gravitational waves have frequency 4\sim 4 kHz and amplitude h2×1022h \sim 2 \times 10^{-22} at the distance of the Virgo Cluster. They carry off energy ΔE/M0.1%\Delta E/M \sim 0.1\% and radiate angular momentum ΔJ/J0.7%\Delta J/J \sim 0.7\%.Comment: 16 pages, LaTeX with REVTEX macros, reprints available - send mailing address to [email protected]. Published: PRL 72, 1314 (1994

    Pressure Induced Reentrant Electronic and Magnetic State in Pr0.7Ca0.3MnO3 Manganite

    Full text link
    In Pr0.7_{0.7}Ca0.3_{0.3}MnO3_{3}, pressure induces reentrant magnetic and electronic state changes in the range 1 atm to \sim 6 GPa. The metal-insulator and magnetic transition temperatures coincide from \sim1 to 5 GPa, decouple outside of this range and do not change monotonically with pressure. The effects may be explained by pressure tuned competition between double exchange and super exchange. The insulating state induced by pressure above \sim5 GPa is possibly ferromagnetic, different from the ferromagnetic and antiferromagnetic phase-separated insulating state below \sim0.8 GPa

    Zeroing In On the Top Quark, LSP and Scalar Higgs Masses

    Full text link
    We estimate the top quark, lightest sparticle (LSP) and scalar higgs masses within a supersymmetric grand unified framework in which tanβmt/mb\tan\beta \simeq m_t/m_b and the electroweak symmetry is radiatively broken. The requirement that the calculated bb quark mass lie close to its measured value, together with the cosmological constraint ΩLSP1\Omega_{LSP} \approx 1, fixes the top quark mass to be mt(mt)170±15 GeVm_t(m_t) \approx 170 \pm 15\ GeV. The LSP (of bino purity >98%)\stackrel{_>}{_\sim} 98\%) has mass 200350 GeV\sim 200 - 350\ GeV. In the scalar higgs sector the CP-odd scalar mass mA<220 GeVm_A \stackrel{_<}{_\sim} 220\ GeV. With mA>MZm_A \stackrel{_>}{_\sim} M_Z, as suggested by the decay bsγb \rightarrow s\gamma, we find MZ<mh0(mH0)<140(220) GeVM_Z \stackrel{_<}{_\sim} m_{h^0} (m_{H^0}) \stackrel{_<}{_\sim} 140 (220)\ GeV and 120 GeV<mH±<240 GeV120\ GeV \stackrel{_<}{_\sim} m_{H^\pm} \stackrel{_<}{_\sim} 240\ GeV.Comment: 14 pages in plain LaTeX, BA-93-25, PRL-TH-93/
    corecore