331,806 research outputs found
Generalized Shortest Path Kernel on Graphs
We consider the problem of classifying graphs using graph kernels. We define
a new graph kernel, called the generalized shortest path kernel, based on the
number and length of shortest paths between nodes. For our example
classification problem, we consider the task of classifying random graphs from
two well-known families, by the number of clusters they contain. We verify
empirically that the generalized shortest path kernel outperforms the original
shortest path kernel on a number of datasets. We give a theoretical analysis
for explaining our experimental results. In particular, we estimate
distributions of the expected feature vectors for the shortest path kernel and
the generalized shortest path kernel, and we show some evidence explaining why
our graph kernel outperforms the shortest path kernel for our graph
classification problem.Comment: Short version presented at Discovery Science 2015 in Banf
Shortest Paths Avoiding Forbidden Subpaths
In this paper we study a variant of the shortest path problem in graphs:
given a weighted graph G and vertices s and t, and given a set X of forbidden
paths in G, find a shortest s-t path P such that no path in X is a subpath of
P. Path P is allowed to repeat vertices and edges. We call each path in X an
exception, and our desired path a shortest exception-avoiding path. We
formulate a new version of the problem where the algorithm has no a priori
knowledge of X, and finds out about an exception x in X only when a path
containing x fails. This situation arises in computing shortest paths in
optical networks. We give an algorithm that finds a shortest exception avoiding
path in time polynomial in |G| and |X|. The main idea is to run Dijkstra's
algorithm incrementally after replicating vertices when an exception is
discovered.Comment: 12 pages, 2 figures. Fixed a few typos, rephrased a few sentences,
and used the STACS styl
Computing a rectilinear shortest path amid splinegons in plane
We reduce the problem of computing a rectilinear shortest path between two
given points s and t in the splinegonal domain \calS to the problem of
computing a rectilinear shortest path between two points in the polygonal
domain. As part of this, we define a polygonal domain \calP from \calS and
transform a rectilinear shortest path computed in \calP to a path between s and
t amid splinegon obstacles in \calS. When \calS comprises of h pairwise
disjoint splinegons with a total of n vertices, excluding the time to compute a
rectilinear shortest path amid polygons in \calP, our reduction algorithm takes
O(n + h \lg{n}) time. For the special case of \calS comprising of concave-in
splinegons, we have devised another algorithm in which the reduction procedure
does not rely on the structures used in the algorithm to compute a rectilinear
shortest path in polygonal domain. As part of these, we have characterized few
of the properties of rectilinear shortest paths amid splinegons which could be
of independent interest
Speeding up shortest path algorithms
Given an arbitrary, non-negatively weighted, directed graph we
present an algorithm that computes all pairs shortest paths in time
, where is the number of
different edges contained in shortest paths and is a running
time of an algorithm to solve a single-source shortest path problem (SSSP).
This is a substantial improvement over a trivial times application of
that runs in . In our algorithm we use
as a black box and hence any improvement on results also in improvement
of our algorithm.
Furthermore, a combination of our method, Johnson's reweighting technique and
topological sorting results in an all-pairs
shortest path algorithm for arbitrarily-weighted directed acyclic graphs.
In addition, we also point out a connection between the complexity of a
certain sorting problem defined on shortest paths and SSSP.Comment: 10 page
- …
