236,987 research outputs found
Supercooled Liquid Dynamics Studied via Shear-Mechanical Spectroscopy
We report dynamical shear-modulus measurements for five glass-forming liquids
(pentaphenyl trimethyl trisiloxane, diethyl phthalate, dibutyl phthalate,
1,2-propanediol, and m-touluidine). The shear-mechanical spectra are obtained
by the piezoelectric shear-modulus gauge (PSG) method. This technique allows
one to measure the shear modulus ( Pa) of the liquid within a
frequency range from 1 mHz to 10 kHz. We analyze the frequency-dependent
response functions to investigate whether time-temperature superposition (TTS)
is obeyed. We also study the shear-modulus loss-peak position and its
high-frequency part. It has been suggested that when TTS applies, the
high-frequency side of the imaginary part of the dielectric response decreases
like a power law of the frequency with an exponent -1/2. This conjecture is
analyzed on the basis of the shear mechanical data. We find that TTS is obeyed
for pentaphenyl trimethyl trisiloxane and in 1,2-propanediol while in the
remaining liquids evidence of a mechanical process is found. Although
the the high-frequency power law behavior of the shear-loss
may approach a limiting value of when lowering the temperature, we
find that the exponent lies systematically above this value (around 0.4). For
the two liquids without beta relaxation (pentaphenyl trimethyl trisiloxane and
1,2-propanediol) we also test the shoving model prediction, according to which
the the relaxation-time activation energy is proportional to the instantaneous
shear modulus. We find that the data are well described by this model.Comment: 7 pages, 6 figure
Shear modulus in viscoelastic solid He
The complex shear modulus of solid He exhibits an anomaly in the same
temperature region where torsion oscillators show a change in period. We
propose that the observed stiffening of the shear modulus with decreasing
temperature can be well described by a viscoelastic component that possesses an
increasing relaxation time as temperature decreases. Since a glass is a
viscoelastic material, the response functions derived for a viscoelastic
material are identical to those obtained for a glassy component due to a time
delayed restoring back-action. By generalizing the viscoelastic equations for
stress and strain to a multiphase system of constituents, composed of patches
with different damping and relaxation properties, we predict that the maximum
change of the magnitude of the shear modulus and the maximum height of the
dissipation peak are independent of an applied external frequency. The same
response expressions allow us to calculate the temperature dependence of the
shear modulus' amplitude and dissipation. Finally, we demonstrate that a
Vogel-Fulcher-Tammann (VFT) relaxation time is in agreement with available
experimental data.Comment: 8 pages, 4 figures. Revision has expanded the result section. To
appear in Journal of Low Temperature Physic
Shear modulus of neutron star crust
Shear modulus of solid neutron star crust is calculated by thermodynamic
perturbation theory taking into account ion motion. At given density the crust
is modelled as a body-centered cubic Coulomb crystal of fully ionized atomic
nuclei of one type with the uniform charge-compensating electron background.
Classic and quantum regimes of ion motion are considered. The calculations in
the classic temperature range agree well with previous Monte Carlo simulations.
At these temperatures the shear modulus is given by the sum of a positive
contribution due to the static lattice and a negative contribution
due to the ion motion. The quantum calculations are performed for the first
time. The main result is that at low temperatures the contribution to the shear
modulus due to the ion motion saturates at a constant value, associated with
zero-point ion vibrations. Such behavior is qualitatively similar to the
zero-point ion motion contribution to the crystal energy. The quantum effects
may be important for lighter elements at higher densities, where the ion plasma
temperature is not entirely negligible compared to the typical Coulomb ion
interaction energy. The results of numerical calculations are approximated by
convenient fitting formulae. They should be used for precise neutron star
oscillation modelling, a rapidly developing branch of stellar seismology.Comment: 10 pages, 3 figures, accepted to MNRA
Rheology and ultrasonic properties of Pt57.5Ni5.3Cu14.7P22.5 liquid
The equilibrium and nonequilibrium viscosity and isoconfigurational shear modulus of Pt57.5Ni5.3Cu14.7P22.5 supercooled liquid are evaluated using continuous–strain-rate compression experiments and ultrasonic measurements. By means of a thermodynamically-consistent cooperative shear model, variations in viscosity with both temperature and strain rate are uniquely correlated to the variations in isoconfigurational shear modulus, which leads to an accurate prediction of the liquid fragility and to a good description of the liquid strain-rate sensitivity
- …
