1,128,391 research outputs found

    Shared-memory Graph Truss Decomposition

    Full text link
    We present PKT, a new shared-memory parallel algorithm and OpenMP implementation for the truss decomposition of large sparse graphs. A k-truss is a dense subgraph definition that can be considered a relaxation of a clique. Truss decomposition refers to a partitioning of all the edges in the graph based on their k-truss membership. The truss decomposition of a graph has many applications. We show that our new approach PKT consistently outperforms other truss decomposition approaches for a collection of large sparse graphs and on a 24-core shared-memory server. PKT is based on a recently proposed algorithm for k-core decomposition.Comment: 10 pages, conference submissio

    Open Transactions on Shared Memory

    Full text link
    Transactional memory has arisen as a good way for solving many of the issues of lock-based programming. However, most implementations admit isolated transactions only, which are not adequate when we have to coordinate communicating processes. To this end, in this paper we present OCTM, an Haskell-like language with open transactions over shared transactional memory: processes can join transactions at runtime just by accessing to shared variables. Thus a transaction can co-operate with the environment through shared variables, but if it is rolled-back, also all its effects on the environment are retracted. For proving the expressive power of TCCS we give an implementation of TCCS, a CCS-like calculus with open transactions

    Implementing implicit OpenMP data sharing on GPUs

    Full text link
    OpenMP is a shared memory programming model which supports the offloading of target regions to accelerators such as NVIDIA GPUs. The implementation in Clang/LLVM aims to deliver a generic GPU compilation toolchain that supports both the native CUDA C/C++ and the OpenMP device offloading models. There are situations where the semantics of OpenMP and those of CUDA diverge. One such example is the policy for implicitly handling local variables. In CUDA, local variables are implicitly mapped to thread local memory and thus become private to a CUDA thread. In OpenMP, due to semantics that allow the nesting of regions executed by different numbers of threads, variables need to be implicitly \emph{shared} among the threads of a contention group. In this paper we introduce a re-design of the OpenMP device data sharing infrastructure that is responsible for the implicit sharing of local variables in the Clang/LLVM toolchain. We introduce a new data sharing infrastructure that lowers implicitly shared variables to the shared memory of the GPU. We measure the amount of shared memory used by our scheme in cases that involve scalar variables and statically allocated arrays. The evaluation is carried out by offloading to K40 and P100 NVIDIA GPUs. For scalar variables the pressure on shared memory is relatively low, under 26\% of shared memory utilization for the K40, and does not negatively impact occupancy. The limiting occupancy factor in that case is register pressure. The data sharing scheme offers the users a simple memory model for controlling the implicit allocation of device shared memory

    Multicore-aware parallel temporal blocking of stencil codes for shared and distributed memory

    Full text link
    New algorithms and optimization techniques are needed to balance the accelerating trend towards bandwidth-starved multicore chips. It is well known that the performance of stencil codes can be improved by temporal blocking, lessening the pressure on the memory interface. We introduce a new pipelined approach that makes explicit use of shared caches in multicore environments and minimizes synchronization and boundary overhead. For clusters of shared-memory nodes we demonstrate how temporal blocking can be employed successfully in a hybrid shared/distributed-memory environment.Comment: 9 pages, 6 figure
    corecore