905,995 research outputs found
Shape Memory Effect and Properties Memory Effect of Polyurethane
The relationship between shape and properties memory effect, especially viscoelastic properties of polyurethane under study is the main aim of this research work. Tensile tests have been performed in order to introduce 100% of deformation in the polyurethane samples. Under this deformation, stress–relaxation experiments have been performed in order to eliminate the residual stresses. This deformation of the samples has been fixed by cooling. Recovery tests, then, were carried out at different isothermal temperatures that varied from 30 C to 60 C. Viscoelastic behavior has been studied by a biparabolic model and by using the Cole–Cole method. It was shown that this model describes the behavior of the polymer at the different states of shape memory tests. The constants of this model then have been determined. This study leads to a better understanding of the mechanism of shape memory effect. The comparison between the virgin polymer and the polymer after a recovery test by DMTA (dynamic mechanical thermal analysis) and by Cole–Cole method has illustrated that the polymer does not obtain its initial properties even when it was totally regained its initial shape. These results have been confirmed by three successive shape memory tests on the same sample and by comparing the mechanical characteristics of different cycles because ‘‘shape memory effect’’ and ‘‘properties memory effect’’ do not follow the same mechanisms
Some New Concepts of Shape Memory Effect of Polymers
In this study some new concepts regarding certain aspects related to shape memory polymers are presented. A blend of polylactic acid (PLA) (80%) and polybutylene succinate (PBS) (20%) was prepared first by extrusion, then by injection molding to obtain the samples. Tensile, stress-relaxation and recovery tests were performed on these samples at 70 °C. The results indicated that the blend can only regain 24% of its initial shape. It was shown that, this partial shape memory effect could be improved by successive cycles of shape memory tests. After a fourth cycle, the blend is able to regain 82% of its shape. These original results indicated that a polymer without (or with partial) shape memory effect may be transformed into a shape memory polymer without any chemical modification. In this work, we have also shown the relationship between shape memory and property memory effect. Mono and multi-frequency DMA (dynamic mechanical analyzer) tests on virgin and 100% recovered samples of polyurethane (PU) revealed that the polymer at the end of the shape memory tests regains 100% of its initial form without regaining some of its physical properties like glass transition temperature, tensile modulus, heat expansion coefficient and free volume fraction. Shape memory (with and without stress-relaxation) tests were performed on the samples in order to show the role of residual stresses during recovery tests. On the basis of the results we have tried to show the origin of the driving force responsible for shape memory effect
Magnetic shape-memory effect in SrRuO
Like most perovskites, SrRuO exhibits structural phase transitions
associated with rotations of the RuO octahedra. The application of moderate
magnetic fields in the ferromagnetically ordered state allows one to fully
control these structural distortions, although the ferromagnetic order occurs
at six times lower temperature than the structural distortion. Our neutron
diffraction and macroscopic measurements unambiguously show that magnetic
fields rearrange structural domains, and that for the field along a cubic
[110] direction a fully detwinned crystal is obtained. Subsequent heating
above the Curie temperature causes a magnetic shape-memory effect, where the
initial structural domains recover
A micromechanics inspired constitutive model for shape-memory alloys: the one-dimensional case
This paper presents a constitutive model for shape-memory alloys that builds on ideas generated from recent micromechanical studies of the underlying microstructure. The presentation here is in one dimension. It is applicable in a wide temperature range that covers both the shape-memory effect and superelasticity, is valid for a wide range of strain rates and incorporates plasticity. The thermodynamic setting of the model is explained and the model is demonstrated through examples
Homogenization in magnetic-shape-memory polymer composites
Magnetic-shape-memory materials (e.g. specific NiMnGa alloys) react with a
large change of shape to the presence of an external magnetic field. As an
alternative for the difficult to manifacture single crystal of these alloys we
study composite materials in which small magnetic-shape-memory particles are
embedded in a polymer matrix. The macroscopic properties of the composite
depend strongly on the geometry of the microstructure and on the
characteristics of the particles and the polymer.
We present a variational model based on micromagnetism and elasticity, and
derive via homogenization an effective macroscopic model under the assumption
that the microstructure is periodic. We then study numerically the resulting
cell problem, and discuss the effect of the microstructure on the macroscopic
material behavior. Our results may be used to optimize the shape of the
particles and the microstructure.Comment: 17 pages, 4 figure
Entangled single-wire NiTi material: a porous metal with tunable superelastic and shape memory properties
NiTi porous materials with unprecedented superelasticity and shape memory
were manufactured by self-entangling, compacting and heat treating NiTi wires.
The versatile processing route used here allows to produce entanglements of
either superelastic or ferroelastic wires with tunable mesostructures. Three
dimensional (3D) X-ray microtomography shows that the entanglement
mesostructure is homogeneous and isotropic. The thermomechanical compressive
behavior of the entanglements was studied using optical measurements of the
local strain field. At all relative densities investigated here ( 25 -
40), entanglements with superelastic wires exhibit remarkable macroscale
superelasticity, even after compressions up to 25, large damping capacity,
discrete memory effect and weak strain-rate and temperature dependencies.
Entanglements with ferroelastic wires resemble standard elastoplastic fibrous
systems with pronounced residual strain after unloading. However, a full
recovery is obtained by heating the samples, demonstrating a large shape memory
effect at least up to 16% strain.Comment: 31 pages, 10 figures, submitted to Acta Materiali
- …
