1,579,936 research outputs found

    Shape Parameter Estimation

    Get PDF
    Performance of machine learning approaches depends strongly on the choice of misfit penalty, and correct choice of penalty parameters, such as the threshold of the Huber function. These parameters are typically chosen using expert knowledge, cross-validation, or black-box optimization, which are time consuming for large-scale applications. We present a principled, data-driven approach to simultaneously learn the model pa- rameters and the misfit penalty parameters. We discuss theoretical properties of these joint inference problems, and develop algorithms for their solution. We show synthetic examples of automatic parameter tuning for piecewise linear-quadratic (PLQ) penalties, and use the approach to develop a self-tuning robust PCA formulation for background separation.Comment: 20 pages, 10 figure

    Numerical investigation of Differential Biological-Models via GA-Kansa Method Inclusive Genetic Strategy

    Full text link
    In this paper, we use Kansa method for solving the system of differential equations in the area of biology. One of the challenges in Kansa method is picking out an optimum value for Shape parameter in Radial Basis Function to achieve the best result of the method because there are not any available analytical approaches for obtaining optimum Shape parameter. For this reason, we design a genetic algorithm to detect a close optimum Shape parameter. The experimental results show that this strategy is efficient in the systems of differential models in biology such as HIV and Influenza. Furthermore, we prove that using Pseudo-Combination formula for crossover in genetic strategy leads to convergence in the nearly best selection of Shape parameter.Comment: 42 figures, 23 page
    corecore