1,579,936 research outputs found
Shape Parameter Estimation
Performance of machine learning approaches depends strongly on the choice of
misfit penalty, and correct choice of penalty parameters, such as the threshold
of the Huber function. These parameters are typically chosen using expert
knowledge, cross-validation, or black-box optimization, which are time
consuming for large-scale applications. We present a principled, data-driven
approach to simultaneously learn the model pa- rameters and the misfit penalty
parameters. We discuss theoretical properties of these joint inference
problems, and develop algorithms for their solution. We show synthetic examples
of automatic parameter tuning for piecewise linear-quadratic (PLQ) penalties,
and use the approach to develop a self-tuning robust PCA formulation for
background separation.Comment: 20 pages, 10 figure
Numerical investigation of Differential Biological-Models via GA-Kansa Method Inclusive Genetic Strategy
In this paper, we use Kansa method for solving the system of differential
equations in the area of biology. One of the challenges in Kansa method is
picking out an optimum value for Shape parameter in Radial Basis Function to
achieve the best result of the method because there are not any available
analytical approaches for obtaining optimum Shape parameter. For this reason,
we design a genetic algorithm to detect a close optimum Shape parameter. The
experimental results show that this strategy is efficient in the systems of
differential models in biology such as HIV and Influenza. Furthermore, we prove
that using Pseudo-Combination formula for crossover in genetic strategy leads
to convergence in the nearly best selection of Shape parameter.Comment: 42 figures, 23 page
- …
