154,161 research outputs found
A Riemannian View on Shape Optimization
Shape optimization based on the shape calculus is numerically mostly
performed by means of steepest descent methods. This paper provides a novel
framework to analyze shape-Newton optimization methods by exploiting a
Riemannian perspective. A Riemannian shape Hessian is defined yielding often
sought properties like symmetry and quadratic convergence for Newton
optimization methods.Comment: 15 pages, 1 figure, 1 table. Forschungsbericht / Universit\"at Trier,
Mathematik, Informatik 2012,
Shape Calculus for Shape Energies in Image Processing
Many image processing problems are naturally expressed as energy minimization
or shape optimization problems, in which the free variable is a shape, such as
a curve in 2d or a surface in 3d. Examples are image segmentation, multiview
stereo reconstruction, geometric interpolation from data point clouds. To
obtain the solution of such a problem, one usually resorts to an iterative
approach, a gradient descent algorithm, which updates a candidate shape
gradually deforming it into the optimal shape. Computing the gradient descent
updates requires the knowledge of the first variation of the shape energy, or
rather the first shape derivative. In addition to the first shape derivative,
one can also utilize the second shape derivative and develop a Newton-type
method with faster convergence. Unfortunately, the knowledge of shape
derivatives for shape energies in image processing is patchy. The second shape
derivatives are known for only two of the energies in the image processing
literature and many results for the first shape derivative are limiting, in the
sense that they are either for curves on planes, or developed for a specific
representation of the shape or for a very specific functional form in the shape
energy. In this work, these limitations are overcome and the first and second
shape derivatives are computed for large classes of shape energies that are
representative of the energies found in image processing. Many of the formulas
we obtain are new and some generalize previous existing results. These results
are valid for general surfaces in any number of dimensions. This work is
intended to serve as a cookbook for researchers who deal with shape energies
for various applications in image processing and need to develop algorithms to
compute the shapes minimizing these energies
On Role Logic
We present role logic, a notation for describing properties of relational
structures in shape analysis, databases, and knowledge bases. We construct role
logic using the ideas of de Bruijn's notation for lambda calculus, an encoding
of first-order logic in lambda calculus, and a simple rule for implicit
arguments of unary and binary predicates. The unrestricted version of role
logic has the expressive power of first-order logic with transitive closure.
Using a syntactic restriction on role logic formulas, we identify a natural
fragment RL^2 of role logic. We show that the RL^2 fragment has the same
expressive power as two-variable logic with counting C^2 and is therefore
decidable. We present a translation of an imperative language into the
decidable fragment RL^2, which allows compositional verification of programs
that manipulate relational structures. In addition, we show how RL^2 encodes
boolean shape analysis constraints and an expressive description logic.Comment: 20 pages. Our later SAS 2004 result builds on this wor
Optimal actuator design based on shape calculus
An approach to optimal actuator design based on shape and topology
optimisation techniques is presented. For linear diffusion equations, two
scenarios are considered. For the first one, best actuators are determined
depending on a given initial condition. In the second scenario, optimal
actuators are determined based on all initial conditions not exceeding a chosen
norm. Shape and topological sensitivities of these cost functionals are
determined. A numerical algorithm for optimal actuator design based on the
sensitivities and a level-set method is presented. Numerical results support
the proposed methodology.Comment: 41 pages, several figure
A Tableaux Calculus for Reducing Proof Size
A tableau calculus is proposed, based on a compressed representation of
clauses, where literals sharing a similar shape may be merged. The inferences
applied on these literals are fused when possible, which reduces the size of
the proof. It is shown that the obtained proof procedure is sound,
refutationally complete and allows to reduce the size of the tableau by an
exponential factor. The approach is compatible with all usual refinements of
tableaux.Comment: Technical Repor
- …
