436,326 research outputs found
Split Distributed Computing in Wireless Sensor Networks
We designed a novel method intended to improve the performance of distributed computing in wireless sensor networks. Our proposed method is designed to rapidly increase the speed of distributed computing and decrease the number of the messages required for a network to achieve the desired result. In our analysis, we chose Average consensus algorithm. In this case, the desired result is that every node achieves the average value calculated from all the initial values in the reduced number of iterations. Our method is based on the idea that a fragmentation of a network into small geographical structures which execute distributed calculations in parallel significantly affects the performance
SIR: A New Wireless Sensor Network Routing Protocol Based on Artificial Intelligence
Currently, Wireless Sensor Networks (WSNs) are formed by
hundreds of low energy and low cost micro-electro-mechanical systems.
Routing and low power consumption have become important research issues
to interconnect this kind of networks. However, conventional Quality
of Service routing models, are not suitable for ad hoc sensor networks,
due to the dynamic nature of such systems. This paper introduces a new
QoS-driven routing algorithm, named SIR: Sensor Intelligence Routing.
We have designed an artificial neural network based on Kohonen self
organizing features map. Every node implements this artificial neural
network forming a distributed intelligence and ubiquitous computing
system
An Identity Based Key Management Scheme in Wireless Sensor Networks
Pairwise key establishment is one of the fundamental security services in
sensor networks which enables sensor nodes in a sensor network to communicate
securely with each other using cryptographic techniques. It is not feasible to
apply traditional public key management techniques in resource-constrained
sensor nodes, and also because the sensor nodes are vulnerable to physical
capture. In this paper, we introduce a new scheme called the identity based key
pre-distribution using a pseudo random function (IBPRF), which has better
trade-off between communication overhead, network connectivity and resilience
against node capture compared to the other key pre-distribution schemes. Our
scheme can be easily adapted in mobile sensor networks. This scheme supports
the addition of new sensor nodes after the initial deployment and also works
for any deployment topology. In addition, we propose an improved version of our
scheme to support large sensor networks.Comment: 7 pages, Published in Proceedings of 4th Asian International Mobile
Computing Conference (AMOC 2006), Kolkata, India, pp. 70-76, January 4-7,
200
Integrating Sensor-Network Research and Development into a Software Engineering Curriculum
The emergence of a sensor-networked world produces a clear and urgent need for well-planned, safe and secure software engineering. It is the role of universities to prepare graduates with the knowledge and experience to enter the work-force with a clear understanding of software design and its application to the future safety of computing. The snBench (Sensor Network WorkBench) project aims to provide support to the programming and deployment of Sensor Network Applications, enabling shared sensor embedded spaces to be easily tasked with various sensory applications by different users for simultaneous execution. In this report we discus our experience using the snBench research project as the foundation for semester-long project in a graduate level software engineering class at Boston University (CS511)
Addressing the Node Discovery Problem in Fog Computing
In recent years, the Internet of Things (IoT) has gained a lot of attention due to connecting various sensor devices with the cloud, in order to enable smart applications such as: smart traffic management, smart houses, and smart grids, among others. Due to the growing popularity of the IoT, the number of Internet-connected devices has increased significantly. As a result, these devices generate a huge amount of network traffic which may lead to bottlenecks, and eventually increase the communication latency with the cloud. To cope with such issues, a new computing paradigm has emerged, namely: fog computing. Fog computing enables computing that spans from the cloud to the edge of the network in order to distribute the computations of the IoT data, and to reduce the communication latency. However, fog computing is still in its infancy, and there are still related open problems. In this paper, we focus on the node discovery problem, i.e., how to add new compute nodes to a fog computing system. Moreover, we discuss how addressing this problem can have a positive impact on various aspects of fog computing, such as fault tolerance, resource heterogeneity, proximity awareness, and scalability. Finally, based on the experimental results that we produce by simulating various distributed compute nodes, we show how addressing the node discovery problem can improve the fault tolerance of a fog computing system
Local Multicoloring Algorithms: Computing a Nearly-Optimal TDMA Schedule in Constant Time
The described multicoloring problem has direct applications in the context of
wireless ad hoc and sensor networks. In order to coordinate the access to the
shared wireless medium, the nodes of such a network need to employ some medium
access control (MAC) protocol. Typical MAC protocols control the access to the
shared channel by time (TDMA), frequency (FDMA), or code division multiple
access (CDMA) schemes. Many channel access schemes assign a fixed set of time
slots, frequencies, or (orthogonal) codes to the nodes of a network such that
nodes that interfere with each other receive disjoint sets of time slots,
frequencies, or code sets. Finding a valid assignment of time slots,
frequencies, or codes hence directly corresponds to computing a multicoloring
of a graph . The scarcity of bandwidth, energy, and computing resources in
ad hoc and sensor networks, as well as the often highly dynamic nature of these
networks require that the multicoloring can be computed based on as little and
as local information as possible
EYES - Energy Efficient Sensor Networks
The EYES project (IST-2001-34734) is a three years European research project on self-organizing and collaborative energy-efficient sensor networks. It will address the convergence of distributed information processing, wireless communications, and mobile computing. The goal of the project is to develop the architecture and the technology which enables the creation of a new generation of sensors that can effectively network together so as to provide a flexible platform for the support of a large variety of mobile sensor network applications. This document gives an overview of the EYES project
One-bit Distributed Sensing and Coding for Field Estimation in Sensor Networks
This paper formulates and studies a general distributed field reconstruction
problem using a dense network of noisy one-bit randomized scalar quantizers in
the presence of additive observation noise of unknown distribution. A
constructive quantization, coding, and field reconstruction scheme is developed
and an upper-bound to the associated mean squared error (MSE) at any point and
any snapshot is derived in terms of the local spatio-temporal smoothness
properties of the underlying field. It is shown that when the noise, sensor
placement pattern, and the sensor schedule satisfy certain weak technical
requirements, it is possible to drive the MSE to zero with increasing sensor
density at points of field continuity while ensuring that the per-sensor
bitrate and sensing-related network overhead rate simultaneously go to zero.
The proposed scheme achieves the order-optimal MSE versus sensor density
scaling behavior for the class of spatially constant spatio-temporal fields.Comment: Fixed typos, otherwise same as V2. 27 pages (in one column review
format), 4 figures. Submitted to IEEE Transactions on Signal Processing.
Current version is updated for journal submission: revised author list,
modified formulation and framework. Previous version appeared in Proceedings
of Allerton Conference On Communication, Control, and Computing 200
- …
