402,905 research outputs found
Recommended from our members
A platform for semantic web studies
The Semantic Web can be seen as a large, heterogeneous network of ontologies and semantic documents. Characterizing these ontologies, the way they relate and the way they are organized can help in better understanding how knowledge is produced and published online. It also provides new ways to explore and exploit this large collection of ontologies. In this paper, we present the foundation of a research platform for characterizing the Semantic Web, relying on the collection of ontologies and the functionalities provided by the Watson Semantic Web search engine. We more specifically focus on formalizing and monitoring relationships between ontologies online, considering a variety of different relations (similarity, versioning, agreement, modularity) and how they can help us obtaining meaningful overviews of the current state of the Semantic Web
Acquisition and management of semantic web service descriptions
Abstract. The increasing importance and use of Web services have resulted in a number of efforts targeted at automating Web service discovery and composition based on semantic descriptions of their properties. However, the progress in the automation of Web service discovery is still held back by the fact that the description of Web services in terms of semantic metadata is still mainly manually. This Ph.D. thesis addresses this problem by developing an approach for the acquisition and management of semantic Web service descriptions in order to facilitate efficient service discovery and composition. Specifically, this involves the collection of information about a Web service, the acquisition of semantic descriptions based on the collected information, and the structured storage of the generated semantic descriptions.
Learning Analogies and Semantic Relations
We present an algorithm for learning from unlabeled text, based on the
Vector Space Model (VSM) of information retrieval, that can solve verbal
analogy questions of the kind found in the Scholastic Aptitude Test (SAT).
A verbal analogy has the form A:B::C:D, meaning "A is to B as C is to D";
for example, mason:stone::carpenter:wood. SAT analogy questions provide
a word pair, A:B, and the problem is to select the most analogous word
pair, C:D, from a set of five choices. The VSM algorithm correctly
answers 47% of a collection of 374 college-level analogy questions
(random guessing would yield 20% correct). We motivate this research by
relating it to work in cognitive science and linguistics, and by applying
it to a difficult problem in natural language processing, determining
semantic relations in noun-modifier pairs. The problem is to classify a
noun-modifier pair, such as "laser printer", according to the semantic
relation between the noun (printer) and the modifier (laser). We use a
supervised nearest-neighbour algorithm that assigns a class to a given
noun-modifier pair by finding the most analogous noun-modifier pair in
the training data. With 30 classes of semantic relations, on a collection
of 600 labeled noun-modifier pairs, the learning algorithm attains an F
value of 26.5% (random guessing: 3.3%). With 5 classes of semantic
relations, the F value is 43.2% (random: 20%). The performance is
state-of-the-art for these challenging problems
- …
