1,210,314 research outputs found
Recommended from our members
Statistical Semantic Classification of Crisis Information
The rise of social media as an information channel during crisis has become key to community response. However, existing crisis awareness applications, often struggle to identify relevant information among the high volume of data that is generated over social platforms. A wide range of statistical features and machine learning methods have been researched in recent years to automatically classify this information. In this paper we aim to complement previous studies by exploring the use of semantics as additional features to identify relevant crisis in- formation. Our assumption is that entities and concepts tend to have a more consistent correlation with relevant and irrelevant information, and therefore can enhance the discrimination power of classifiers. Our results, so far, show that some classification improvements can be obtained when using semantic features, reaching +2.51% when the classifier is applied to a new crisis event (i.e., not in training set)
A Semantic Collaboration Method Based on Uniform Knowledge Graph
The Semantic Internet of Things is the extension of the Internet of Things and the Semantic Web, which aims to build an interoperable collaborative system to solve the heterogeneous problems in the Internet of Things. However, the Semantic Internet of Things has the characteristics of both the Internet of Things and the Semantic Web environment, and the corresponding semantic data presents many new data features. In this study, we analyze the characteristics of semantic data and propose the concept of a uniform knowledge graph, allowing us to be applied to the environment of the Semantic Internet of Things better. Here, we design a semantic collaboration method based on a uniform knowledge graph. It can take the uniform knowledge graph as the form of knowledge organization and representation, and provide a useful data basis for semantic collaboration by constructing semantic links to complete semantic relation between different data sets, to achieve the semantic collaboration in the Semantic Internet of Things. Our experiments show that the proposed method can analyze and understand the semantics of user requirements better and provide more satisfactory outcomes
Semantic Analysis Towards English Substantive
The analysis describes semantic theories in defining English substantives “Someone/ Person/ People” with its references in Balinese kinship terms. The purpose is to explain several basic concepts of semantic theories in describing the meaning of specific terms through the analysis of their semantic features. Semantic features of Balinese kinship terms are explored by means of semantic evidence. The result of the analysis showed that semantic theories, Natural Semantics Metalanguage and Componential Analysis could simplify the complex meaning of Balinese kinships terms which were related semantically in order to understand their similarities and differences.
Key words: Semantic features, English substantive (Someone/ Person/ People), Balinese Kinship term
Towards Universal Semantic Tagging
The paper proposes the task of universal semantic tagging---tagging word
tokens with language-neutral, semantically informative tags. We argue that the
task, with its independent nature, contributes to better semantic analysis for
wide-coverage multilingual text. We present the initial version of the semantic
tagset and show that (a) the tags provide semantically fine-grained
information, and (b) they are suitable for cross-lingual semantic parsing. An
application of the semantic tagging in the Parallel Meaning Bank supports both
of these points as the tags contribute to formal lexical semantics and their
cross-lingual projection. As a part of the application, we annotate a small
corpus with the semantic tags and present new baseline result for universal
semantic tagging.Comment: 9 pages, International Conference on Computational Semantics (IWCS
The Semantic Web as a Semantic Soup
The Semantic Web is currently best known for adding metadata to web pages to allow computers to 'understand' what they contain. This idea has been applied to people by the Friend of a Friend project which builds up a network of who people know through their descriptions placed on web pages in RDF. It is here proposed to use RDF to describe a person and to have their RDF document follow them around the Internet. The proposed technique, dubbed Semantic Cookies, will be implemented by storing a user's RDF in a cookie on their own computer through the browser. This paper considers the concept of Semantic Cookies and investigates how far existing technology can be pushed to accommodate the idea
Semantically Consistent Regularization for Zero-Shot Recognition
The role of semantics in zero-shot learning is considered. The effectiveness
of previous approaches is analyzed according to the form of supervision
provided. While some learn semantics independently, others only supervise the
semantic subspace explained by training classes. Thus, the former is able to
constrain the whole space but lacks the ability to model semantic correlations.
The latter addresses this issue but leaves part of the semantic space
unsupervised. This complementarity is exploited in a new convolutional neural
network (CNN) framework, which proposes the use of semantics as constraints for
recognition.Although a CNN trained for classification has no transfer ability,
this can be encouraged by learning an hidden semantic layer together with a
semantic code for classification. Two forms of semantic constraints are then
introduced. The first is a loss-based regularizer that introduces a
generalization constraint on each semantic predictor. The second is a codeword
regularizer that favors semantic-to-class mappings consistent with prior
semantic knowledge while allowing these to be learned from data. Significant
improvements over the state-of-the-art are achieved on several datasets.Comment: Accepted to CVPR 201
Using fuzzy logic to handle the semantic descriptions of music in a content-based retrieval system
This paper explores the potential use of fuzzy logic for semantic music recommendation. We show that a set of affective/emotive, structural and kinaesthetic descriptors can be used to formulate a query which allows the retrieval of intended music. A semantic music recommendation system was built, based on an elaborate study of potential users and an analysis of the semantic descriptors that best characterize the user’s understanding of music. Significant relationships between expressive and structural semantic descriptions of music were found. Fuzzy logic was then applied to handle the
quality ratings associated with the semantic descriptions. A working semantic music recommendation system was tested and evaluated. Real-world testing revealed high user satisfaction
- …
