19,136 research outputs found

    Geochemistry and petrogenesis of volcanic rocks from Daimao Seamount (South China Sea) and their tectonic implications

    Get PDF
    The South China Sea (SCS) experienced three episodes of seafloor spreading and left three fossil spreading centers presently located at 18°N, 17°N and 15.5°N. Spreading ceased at these three locations during magnetic anomaly 10, 8, and 5c, respectively. Daimao Seamount (16.6. Ma) was formed 10. my after the cessation of the 17°N spreading center. Volcaniclastic rocks and shallow-water carbonate facies near the summit of Daimao Seamount provide key information on the seamount's geologic history. New major and trace element and Sr-Nd-Pb isotopic compositions of basaltic breccia clasts in the volcaniclastics suggest that Daimao and other SCS seamounts have typical ocean island basalt-like composition and possess a 'Dupal' isotopic signature. Our new analyses, combined with available data, indicate that the basaltic foundation of Daimao Seamount was formed through subaqueous explosive volcanic eruptions at 16.6. Ma. The seamount subsided rapidly (>. 0.12. mm/y) at first, allowing the deposition of shallow-water, coral-bearing carbonates around its summit and, then, at a slower rate (<. 0.12. mm/y). We propose that the parental magmas of SCS seamount lavas originated from the Hainan mantle plume. In contrast, lavas from contemporaneous seamounts in other marginal basins in the western Pacific are subduction-related

    Sablefish, Anoplopoma fimbria, Populations on Gulf of Alaska Seamounts

    Get PDF
    Sablefish, Anoplopoma fimbria, were tagged and released on Gulf of Alaska seamounts during 1999–2002 to determine the extent, if any, of emigration from the seamounts back to the continental slope and of movement between seamounts. Seventeen sablefish from Gulf of Alaska seamounts have been recovered on the continental slope since tagging began, verifying that seamount to slope migration occurs. Forty-two sablefish were recovered on the same seamounts where they were tagged, and none have been recaptured on seamounts other than the ones where they were released. Sablefish populations on Gulf of Alaska seamounts are made up of individuals mostly older than 5 years and are maledominant, with sex ratios varying from 4:1 up to 10:1 males to females. Males are smaller than females, but the average age of males is greater than that of females, and males have a greater range of age (4–64 yr) than females (4–48 yr). Otoliths of seamount fish frequently have an area of highly compressed annuli, known as the transition zone, where growth has suddenly and greatly slowed or even stopped. Because transition zones can be present in both younger and older seamount fish and are rare in slope fish, formation of otolith transition zones may be related to travel to the seamounts. The route sablefish use to reach the seamounts is so far unknown. One possibility is that fish enter the eastward-flowing North Pacific Current off the Aleutian Islands or western Gulf of Alaska and travel more or less passively on the current until encountering a seamount. The route from seamount back to slope would likely be the northwardflowing Alaska Current. These routes are discussed in light of tag recovery locations of slope- and seamount-tagged fish

    Undersea volcano production versus lithospheric strength from satellite altimetry

    Get PDF
    All seamount signatures apparent in the SEASAT altimeter profiles were located and digitized. In addition to locating the seamount signatures, their amplitudes were also estimated. The second phase consisted of determining what basic characteristics of a seamount can be extracted from a single vertical deflection profile. Seven seamounts that had both good bathymetric coverage and good satellite altimeter coverage were used to test a simple flexural model. A method was developed to combine satellite altimeter profiles from several different satellites to construct a detailed and accurate geoid

    Origen del Alineamiento Submarino de Pascua: morfología y lineamientos estructurales

    Get PDF
    Indexación: Web of Science; Scielo.ABSTRACT. The Easter submarine alignment corresponds to a sequence of seamounts and oceanic islands which runs from the Ahu-Umu volcanic fields in the west to its intersection with the Nazca Ridge in the east, with a total length of about 2.900 km and a strike of N85°E. Recent bathymetric compilations that include combined satellite derived and shipboard data (Global Topography) and multibeam bathymetric data (from NGDC-NOAA) are interpreted both qualitatively and quantitatively by using a morphological analysis, which was comprised of the determination of bathymetric patterns, trends in lineations and structures; height measurements, computation of basal areas and volumes of seamounts, in order to establish clues on the origin of this seamount chain and to establish relationships with the regional tectonics. In the study region 514 seamounts were counted, of which 334 had a basal area less than the reference seamount (Moai). In general, the largest seamounts (>1000 m in height) tend to align and to have a larger volume, with an elongation of their bases along the seamount chain. On the other hand, smaller seamounts tend to be distributed more randomly with more circular bases. As a consequence of the morphological analysis, the best possible mechanism that explains the origin of the seamount chain is the existence of a localized hotspot to the west of the Salas y Gómez Island. The corresponding plume would contribute additional magmatic material towards the East Pacific Rise through canalizations, whose secondary branches would feed intermediate volcanoes. It is possible that within the Easter Island region there would be another minor contribution through fractures in the crust, due to the crustal weakening that was produced by the Easter Fracture Zone.RESUMEN. El alineamiento submarino de Pascua es un cordón de montes submarinos e islas que comprende, por el W, desde los campos volcánicos Ahu-Umu y, hasta el E, su intersección con la elevación de Nazca, con una extensión total de ca. 2900 km y un rumbo de ~N85°E. Compilaciones recientes de batimetría que incluyen datos derivados de satélites y obtenidos por buques (Global Topography) y datos batimétricos de ecosondas multihaz (NGDC-NOAA), se interpretaron cualitativa y cuantitativamente mediante análisis morfológico que consistió en la determinación de patrones batimétricos; tendencias de los lineamientos y estructuras; mediciones de alturas, áreas basales y cálculo de volúmenes de montes submarinos; para establecer indicios sobre el origen del alineamiento y asociaciones con la tectónica regional. Se contabilizaron 514 montes submarinos en la región de estudio, de los cuales 334 tuvieron un área basal menor que el monte de referencia (Moai). En general, los montes más grandes (>1000 m de altura) tienden a alinearse y a tener un mayor volumen, con un alargamiento de sus bases en el sentido de la tendencia, en cambio los menores, tienden a distribuirse más aleatoriamente, siendo sus bases más redondeadas. Como consecuencia del análisis morfológico, el mejor mecanismo que explicaría el origen de las cadenas volcánicas, sería por la existencia de un punto caliente localizado al W de la isla Salas y Gómez. Esta pluma también aportaría material magmático adicional hacia la dorsal del Pacífico oriental a través de canalizaciones, cuyas ramas secundarias alimentarían volcanes intermedios. Es posible que en el área de la Isla de Pascua exista otro aporte menor por fracturas de la corteza dado el debilitamiento cortical que produjo la Zona de Fractura de Pascua.http://ref.scielo.org/sdjcy

    The Burdwood Bank Circulation

    Get PDF
    A suite of high-resolution numerical simulations characterizes the oceanic circulation in the Burdwood Bank, a shallow seamount located in the northeastern end of the Drake Passage. Model analysis shows energetic upwelling and mixing uplifting deep and benthic waters into the photic layer. Tides and the Antarctic Circumpolar Current are the primary drivers of the bank's circulation. Tidal forcing is the main driver for the entrainment of deep waters into the upper layers of the bank and local wind forcing for the detrainment of these waters into the deep ocean. Passive tracer diagnostics suggest that the dynamical processes triggered by the Burdwood Bank could have a significant impact on local ecosystems and the biogeochemical balance of the southwestern Atlantic region, which is one of the most fertile portions of the Southern Ocean. Model results are robust—they are reproduced in a wide array of model configurations—but there is insufficient observational evidence to corroborate them. Satellite color imagery does not show substantial chlorophyll blooms in this region but it shows strong phytoplankton plumes emanating from the bank. There are several potential explanations for the chlorophyll deficit, including lack of light due to persistent cloud cover, deep mixing layers, fast ocean currents, and the likelihood that blooms, while extant, might not develop on the surface. None of these possibilities can be confirmed at this stage.Fil: Matano, Ricardo P.. State University of Oregon; Estados UnidosFil: Palma, Elbio Daniel. Universidad Nacional del Sur. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto Argentino de Oceanografía. Universidad Nacional del Sur. Instituto Argentino de Oceanografía; ArgentinaFil: Combes, Vincent. State University of Oregon; Estados Unido

    A three dimensional finite element model of wind effects upon higher harmonics of the internal tide.

    Get PDF
    A non-linear three dimensional unstructured grid model of the M2 tide in the shelf edge area off the west coast of Scotland is used to examine the spatial distribution of the M2 internal tide and its higher harmonics in the region. In addition the spatial variability of the tidally induced turbulent kinetic energy and associated mixing in the area are considered. Initial calculations involve only tidal forcing, although subsequent calculations are performed with up-welling and down-welling favourable winds in order to examine how these influence the tidal distribution (particularly the higher harmonics) and mixing in the region. Both short and long duration winds are used in these calculations. Tidal calculations show that there is significant small scale spatial variability particularly in the higher harmonics of the internal tide in the region. In addition turbulence energy and mixing exhibit appreciable spatial variability in regions of rapidly changing topography, with increased mixing occurring above seamounts. Wind effects significantly change the distribution of the M2 internal tide and its higher harmonics, with appreciable differences found between up- and down-welling winds, and long and short duration winds due to differences in mixing and the presence of wind induced flows. The implications for model validation, particularly in terms of energy transfer to higher harmonics, and mixing are briefly discussed

    The impact of deep-sea fisheries and implementation of the UNGA Resolutions 61/105 and 64/72. Report of an international scientific workshop

    Get PDF
    The scientific workshop to review fisheries management, held in Lisbon in May 2011, brought together 22 scientists and fisheries experts from around the world to consider the United Nations General Assembly (UNGA) resolutions on high seas bottom fisheries: what progress has been made and what the outstanding issues are. This report summarises the workshop conclusions, identifying examples of good practice and making recommendations in areas where it was agreed that the current management measures fall short of their target
    corecore