184,674 research outputs found
Personalized video summarization by highest quality frames
In this work, a user-centered approach has been the basis for generation of the personalized video summaries. Primarily, the video experts score and annotate the video frames during the enrichment phase. Afterwards, the frames scores for different video segments will be updated based on the captured end-users (different with video experts) priorities towards existing video scenes. Eventually, based on the pre-defined skimming time, the highest scored video frames will be extracted to be included into the personalized video summaries. In order to evaluate the effectiveness of our proposed model, we have compared the video summaries generated by our system against the results from 4 other summarization tools using different modalities
Cascaded Scene Flow Prediction using Semantic Segmentation
Given two consecutive frames from a pair of stereo cameras, 3D scene flow
methods simultaneously estimate the 3D geometry and motion of the observed
scene. Many existing approaches use superpixels for regularization, but may
predict inconsistent shapes and motions inside rigidly moving objects. We
instead assume that scenes consist of foreground objects rigidly moving in
front of a static background, and use semantic cues to produce pixel-accurate
scene flow estimates. Our cascaded classification framework accurately models
3D scenes by iteratively refining semantic segmentation masks, stereo
correspondences, 3D rigid motion estimates, and optical flow fields. We
evaluate our method on the challenging KITTI autonomous driving benchmark, and
show that accounting for the motion of segmented vehicles leads to
state-of-the-art performance.Comment: International Conference on 3D Vision (3DV), 2017 (oral presentation
Generalized Video Deblurring for Dynamic Scenes
Several state-of-the-art video deblurring methods are based on a strong
assumption that the captured scenes are static. These methods fail to deblur
blurry videos in dynamic scenes. We propose a video deblurring method to deal
with general blurs inherent in dynamic scenes, contrary to other methods. To
handle locally varying and general blurs caused by various sources, such as
camera shake, moving objects, and depth variation in a scene, we approximate
pixel-wise kernel with bidirectional optical flows. Therefore, we propose a
single energy model that simultaneously estimates optical flows and latent
frames to solve our deblurring problem. We also provide a framework and
efficient solvers to optimize the energy model. By minimizing the proposed
energy function, we achieve significant improvements in removing blurs and
estimating accurate optical flows in blurry frames. Extensive experimental
results demonstrate the superiority of the proposed method in real and
challenging videos that state-of-the-art methods fail in either deblurring or
optical flow estimation.Comment: CVPR 2015 ora
High-speed Video from Asynchronous Camera Array
This paper presents a method for capturing high-speed video using an
asynchronous camera array. Our method sequentially fires each sensor in a
camera array with a small time offset and assembles captured frames into a
high-speed video according to the time stamps. The resulting video, however,
suffers from parallax jittering caused by the viewpoint difference among
sensors in the camera array. To address this problem, we develop a dedicated
novel view synthesis algorithm that transforms the video frames as if they were
captured by a single reference sensor. Specifically, for any frame from a
non-reference sensor, we find the two temporally neighboring frames captured by
the reference sensor. Using these three frames, we render a new frame with the
same time stamp as the non-reference frame but from the viewpoint of the
reference sensor. Specifically, we segment these frames into super-pixels and
then apply local content-preserving warping to warp them to form the new frame.
We employ a multi-label Markov Random Field method to blend these warped
frames. Our experiments show that our method can produce high-quality and
high-speed video of a wide variety of scenes with large parallax, scene
dynamics, and camera motion and outperforms several baseline and
state-of-the-art approaches.Comment: 10 pages, 82 figures, Published at IEEE WACV 201
Action-Conditional Video Prediction using Deep Networks in Atari Games
Motivated by vision-based reinforcement learning (RL) problems, in particular
Atari games from the recent benchmark Aracade Learning Environment (ALE), we
consider spatio-temporal prediction problems where future (image-)frames are
dependent on control variables or actions as well as previous frames. While not
composed of natural scenes, frames in Atari games are high-dimensional in size,
can involve tens of objects with one or more objects being controlled by the
actions directly and many other objects being influenced indirectly, can
involve entry and departure of objects, and can involve deep partial
observability. We propose and evaluate two deep neural network architectures
that consist of encoding, action-conditional transformation, and decoding
layers based on convolutional neural networks and recurrent neural networks.
Experimental results show that the proposed architectures are able to generate
visually-realistic frames that are also useful for control over approximately
100-step action-conditional futures in some games. To the best of our
knowledge, this paper is the first to make and evaluate long-term predictions
on high-dimensional video conditioned by control inputs.Comment: Published at NIPS 2015 (Advances in Neural Information Processing
Systems 28
Tracking in Urban Traffic Scenes from Background Subtraction and Object Detection
In this paper, we propose to combine detections from background subtraction
and from a multiclass object detector for multiple object tracking (MOT) in
urban traffic scenes. These objects are associated across frames using spatial,
colour and class label information, and trajectory prediction is evaluated to
yield the final MOT outputs. The proposed method was tested on the Urban
tracker dataset and shows competitive performances compared to state-of-the-art
approaches. Results show that the integration of different detection inputs
remains a challenging task that greatly affects the MOT performance
- …
