1,953,552 research outputs found
Scanning ultrafast electron microscopy
Progress has been made in the development of four-dimensional ultrafast electron microscopy, which enables space-time imaging of structural dynamics in the condensed phase. In ultrafast electron microscopy, the electrons are accelerated, typically to 200 keV, and the microscope operates in the transmission mode. Here, we report the development of scanning ultrafast electron microscopy using a field-emission-source configuration. Scanning of pulses is made in the single-electron mode, for which the pulse contains at most one or a few electrons, thus achieving imaging without the space-charge effect between electrons, and still in ten(s) of seconds. For imaging, the secondary electrons from surface structures are detected, as demonstrated here for material surfaces and biological specimens. By recording backscattered electrons, diffraction patterns from single crystals were also obtained. Scanning pulsed-electron microscopy with the acquired spatiotemporal resolutions, and its efficient heat-dissipation feature, is now poised to provide in situ 4D imaging and with environmental capability
Scanning Quantum Dot Microscopy
Interactions between atomic and molecular objects are to a large extent
defined by the nanoscale electrostatic potentials which these objects produce.
We introduce a scanning probe technique that enables three-dimensional imaging
of local electrostatic potential fields with sub-nanometer resolution.
Registering single electron charging events of a molecular quantum dot attached
to the tip of a (qPlus tuning fork) atomic force microscope operated at 5 K, we
quantitatively measure the quadrupole field of a single molecule and the dipole
field of a single metal adatom, both adsorbed on a clean metal surface. Because
of its high sensitivity, the technique can record electrostatic potentials at
large distances from their sources, which above all will help to image complex
samples with increased surface roughness.Comment: main text: 5 pages, 4 figures, supplementary information file: 4
pages, 2 figure
Electronic scanning of 2-channel monopulse patterns
Scanning method involves separation of scanning capability into two independent degrees of freedom. One degree of freedom corresponds to azimuthal scanning and other to elevation scanning on spiral coordinate axes. Scanning of both prime-feed and mirrored patterns is accomplished with reduction of mechanical vibration damage to large antennas
Scanning Quantum Decoherence Microscopy
The use of qubits as sensitive magnetometers has been studied theoretically
and recent demonstrated experimentally. In this paper we propose a
generalisation of this concept, where a scanning two-state quantum system is
used to probe the subtle effects of decoherence (as well as its surrounding
electromagnetic environment). Mapping both the Hamiltonian and decoherence
properties of a qubit simultaneously, provides a unique image of the magnetic
(or electric) field properties at the nanoscale. The resulting images are
sensitive to the temporal as well as spatial variation in the fields created by
the sample. As an example we theoretically study two applications of this
technology; one from condensed matter physics, the other biophysics. The
individual components required to realise the simplest version of this device
(characterisation and measurement of qubits, nanoscale positioning) have
already been demonstrated experimentally.Comment: 11 pages, 5 low quality (but arXiv friendly) image
Scanning microSQUID Force Microscope
A novel scanning probe technique is presented: Scanning microSQUID Force
microscopy (SSFM). The instrument features independent topographic and magnetic
imaging. The SSFM operates in a dilution refrigerator in cryogenic vacuum.
Sample and probe can be cooled to 0.45 K. The probe consists of a microSQUID
placed at the edge of a silicon chip attached to a quartz tuning fork. A
topographic vertical resolution of 0.02 micrometer is demonstrated and magnetic
flux as weak as is resolved with a 1 micrometer diameter
microSQUID loop.Comment: submitted to Review of Scientific Instrument
Inertia compensation while scanning screw threads on coordinate-measuring machines
Usage of scanning coordinate-measuring machines for inspection of screw
threads has become a common practice nowadays. Compared to touch trigger
probing, scanning capabilities allow to speed up measuring process while still
maintaining high accuracy. However, in some cases accuracy drasticaly depends
on the scanning speed. In this paper a compensation method is proposed allowing
to reduce the influence of some dynamic effects while scanning screw threads on
coordinate-measuring machines
Electronic scanning of 2-channel monopulse patterns Patent
Monopulse scanning network for scanning volumetric antenna patter
Nanotube-based scanning rotational microscope
A scheme of the scanning rotational microscope is designed. This scheme is
based on using carbon nanotubes simultaneously as a probe tip and as a bolt/nut
pair which converts translational displacements of two piezo actuators into
pure rotation of the probe tip. First-principles calculations of the
interaction energy between movable and rotational parts of the microscope
confirms the capability for its operation. The scanning rotational microscope
with a chemically functionalized nanotube-based tip can be used to study how
the interaction between individual molecules or a molecule and a surface
depends on their relative orientation.Comment: 4 pages, 3 figure
- …
