1,953,552 research outputs found

    Scanning ultrafast electron microscopy

    Get PDF
    Progress has been made in the development of four-dimensional ultrafast electron microscopy, which enables space-time imaging of structural dynamics in the condensed phase. In ultrafast electron microscopy, the electrons are accelerated, typically to 200 keV, and the microscope operates in the transmission mode. Here, we report the development of scanning ultrafast electron microscopy using a field-emission-source configuration. Scanning of pulses is made in the single-electron mode, for which the pulse contains at most one or a few electrons, thus achieving imaging without the space-charge effect between electrons, and still in ten(s) of seconds. For imaging, the secondary electrons from surface structures are detected, as demonstrated here for material surfaces and biological specimens. By recording backscattered electrons, diffraction patterns from single crystals were also obtained. Scanning pulsed-electron microscopy with the acquired spatiotemporal resolutions, and its efficient heat-dissipation feature, is now poised to provide in situ 4D imaging and with environmental capability

    Scanning Quantum Dot Microscopy

    Get PDF
    Interactions between atomic and molecular objects are to a large extent defined by the nanoscale electrostatic potentials which these objects produce. We introduce a scanning probe technique that enables three-dimensional imaging of local electrostatic potential fields with sub-nanometer resolution. Registering single electron charging events of a molecular quantum dot attached to the tip of a (qPlus tuning fork) atomic force microscope operated at 5 K, we quantitatively measure the quadrupole field of a single molecule and the dipole field of a single metal adatom, both adsorbed on a clean metal surface. Because of its high sensitivity, the technique can record electrostatic potentials at large distances from their sources, which above all will help to image complex samples with increased surface roughness.Comment: main text: 5 pages, 4 figures, supplementary information file: 4 pages, 2 figure

    Electronic scanning of 2-channel monopulse patterns

    Get PDF
    Scanning method involves separation of scanning capability into two independent degrees of freedom. One degree of freedom corresponds to azimuthal scanning and other to elevation scanning on spiral coordinate axes. Scanning of both prime-feed and mirrored patterns is accomplished with reduction of mechanical vibration damage to large antennas

    Scanning Quantum Decoherence Microscopy

    Full text link
    The use of qubits as sensitive magnetometers has been studied theoretically and recent demonstrated experimentally. In this paper we propose a generalisation of this concept, where a scanning two-state quantum system is used to probe the subtle effects of decoherence (as well as its surrounding electromagnetic environment). Mapping both the Hamiltonian and decoherence properties of a qubit simultaneously, provides a unique image of the magnetic (or electric) field properties at the nanoscale. The resulting images are sensitive to the temporal as well as spatial variation in the fields created by the sample. As an example we theoretically study two applications of this technology; one from condensed matter physics, the other biophysics. The individual components required to realise the simplest version of this device (characterisation and measurement of qubits, nanoscale positioning) have already been demonstrated experimentally.Comment: 11 pages, 5 low quality (but arXiv friendly) image

    Scanning microSQUID Force Microscope

    Full text link
    A novel scanning probe technique is presented: Scanning microSQUID Force microscopy (SSFM). The instrument features independent topographic and magnetic imaging. The SSFM operates in a dilution refrigerator in cryogenic vacuum. Sample and probe can be cooled to 0.45 K. The probe consists of a microSQUID placed at the edge of a silicon chip attached to a quartz tuning fork. A topographic vertical resolution of 0.02 micrometer is demonstrated and magnetic flux as weak as 103Φ010^{-3} \Phi_{0} is resolved with a 1 micrometer diameter microSQUID loop.Comment: submitted to Review of Scientific Instrument

    Inertia compensation while scanning screw threads on coordinate-measuring machines

    Full text link
    Usage of scanning coordinate-measuring machines for inspection of screw threads has become a common practice nowadays. Compared to touch trigger probing, scanning capabilities allow to speed up measuring process while still maintaining high accuracy. However, in some cases accuracy drasticaly depends on the scanning speed. In this paper a compensation method is proposed allowing to reduce the influence of some dynamic effects while scanning screw threads on coordinate-measuring machines

    The scanning vibrating needle curemeter

    Get PDF

    Electronic scanning of 2-channel monopulse patterns Patent

    Get PDF
    Monopulse scanning network for scanning volumetric antenna patter

    Nanotube-based scanning rotational microscope

    Full text link
    A scheme of the scanning rotational microscope is designed. This scheme is based on using carbon nanotubes simultaneously as a probe tip and as a bolt/nut pair which converts translational displacements of two piezo actuators into pure rotation of the probe tip. First-principles calculations of the interaction energy between movable and rotational parts of the microscope confirms the capability for its operation. The scanning rotational microscope with a chemically functionalized nanotube-based tip can be used to study how the interaction between individual molecules or a molecule and a surface depends on their relative orientation.Comment: 4 pages, 3 figure
    corecore