676,993 research outputs found

    Auto-generation of passive scalable macromodels for microwave components using scattered sequential sampling

    Get PDF
    This paper presents a method for automatic construction of stable and passive scalable macromodels for parameterized frequency responses. The method requires very little prior knowledge to build the scalable macromodels thereby considerably reducing the burden on the designers. The proposed method uses an efficient scattered sequential sampling strategy with as few expensive simulations as possible to generate accurate macromodels for the system using state-of-the-art scalable macromodeling methods. The scalable macromodels can be used as a replacement model for the actual simulator in overall design processes. Pertinent numerical results validate the proposed sequential sampling strategy

    Measures of scalability

    Get PDF
    Scalable frames are frames with the property that the frame vectors can be rescaled resulting in tight frames. However, if a frame is not scalable, one has to aim for an approximate procedure. For this, in this paper we introduce three novel quantitative measures of the closeness to scalability for frames in finite dimensional real Euclidean spaces. Besides the natural measure of scalability given by the distance of a frame to the set of scalable frames, another measure is obtained by optimizing a quadratic functional, while the third is given by the volume of the ellipsoid of minimal volume containing the symmetrized frame. After proving that these measures are equivalent in a certain sense, we establish bounds on the probability of a randomly selected frame to be scalable. In the process, we also derive new necessary and sufficient conditions for a frame to be scalable.Comment: 27 pages, 5 figure

    A note on scalable frames

    Full text link
    We study the problem of determining whether a given frame is scalable, and when it is, understanding the set of all possible scalings. We show that for most frames this is a relatively simple task in that the frame is either not scalable or is scalable in a unique way, and to find this scaling we just have to solve a linear system. We also provide some insight into the set of all scalings when there is not a unique scaling. In particular, we show that this set is a convex polytope whose vertices correspond to minimal scalings

    zfit: scalable pythonic fitting

    Full text link
    Statistical modeling is a key element in many scientific fields and especially in High-Energy Physics (HEP) analysis. The standard framework to perform this task in HEP is the C++ ROOT/RooFit toolkit; with Python bindings that are only loosely integrated into the scientific Python ecosystem. In this paper, zfit, a new alternative to RooFit written in pure Python, is presented. Most of all, zfit provides a well defined high-level API and workflow for advanced model building and fitting, together with an implementation on top of TensorFlow, allowing a transparent usage of CPUs and GPUs. It is designed to be extendable in a very simple fashion, allowing the usage of cutting-edge developments from the scientific Python ecosystem in a transparent way. The main features of zfit are introduced, and its extension to data analysis, especially in the context of HEP experiments, is discussed.Comment: 12 pages, 2 figure

    Scalable Peer-to-Peer Indexing with Constant State

    Full text link
    We present a distributed indexing scheme for peer to peer networks. Past work on distributed indexing traded off fast search times with non-constant degree topologies or network-unfriendly behavior such as flooding. In contrast, the scheme we present optimizes all three of these performance measures. That is, we provide logarithmic round searches while maintaining connections to a fixed number of peers and avoiding network flooding. In comparison to the well known scheme Chord, we provide competitive constant factors. Finally, we observe that arbitrary linear speedups are possible and discuss both a general brute force approach and specific economical optimizations
    corecore