260,111 research outputs found

    Ceramic identity contributes to mechanical properties and osteoblast behavior on macroporous composite scaffolds.

    Get PDF
    Implants formed of metals, bioceramics, or polymers may provide an alternative to autografts for treating large bone defects. However, limitations to each material motivate the examination of composites to capitalize on the beneficial aspects of individual components and to address the need for conferring bioactive behavior to the polymer matrix. We hypothesized that the inclusion of different bioceramics in a ceramic-polymer composite would alter the physical properties of the implant and the cellular osteogenic response. To test this, composite scaffolds formed from poly(lactide-co-glycolide) (PLG) and either hydroxyapatite (HA), β-tricalcium phosphate (TCP), or bioactive glass (Bioglass 45S®, BG) were fabricated, and the physical properties of each scaffold were examined. We quantified cell proliferation by DNA content, osteogenic response of human osteoblasts (NHOsts) to composite scaffolds by alkaline phosphatase (ALP) activity, and changes in gene expression by qPCR. Compared to BG-PLG scaffolds, HA-PLG and TCP-PLG composite scaffolds possessed greater compressive moduli. NHOsts on BG-PLG substrates exhibited higher ALP activity than those on control, HA-, or TCP-PLG scaffolds after 21 days, and cells on composites exhibited a 3-fold increase in ALP activity between 7 and 21 days versus a minimal increase on control scaffolds. Compared to cells on PLG controls, RUNX2 expression in NHOsts on composite scaffolds was lower at both 7 and 21 days, while expression of genes encoding for bone matrix proteins (COL1A1 and SPARC) was higher on BG-PLG scaffolds at both time points. These data demonstrate the importance of selecting a ceramic when fabricating composites applied for bone healing

    Elastic biodegradable starch/ethylene-co-vinyl alcohol fibre-mesh scaffolds for tissue engineering applications

    Get PDF
    The fabrication of a biomaterial scaffold, with adequate physical and structural properties for tissue engineering applications, is reported. A blend of starch with ethylene-vinyl alcohol (50/50 w/w, SEVA-C) is used to produce 3D fibre-mesh scaffolds by wet-spinning. The scaffolds are characterized in terms of morphology, porosity, interconnectivity, and pore size, using scanning electron microscopy (SEM) and microcomputed tomography (μCT). The degradation behavior, as well as the mechanical properties of the scaffolds, is investigated in presence of alpha-amylase enzyme at physiological concentration. Scaffolds with porosities ranging from 43 to 52%, interconnectivity of ∼70.5% and pore size between 118 and 159 μm, can be fabricated using the proposed methodology. The scaffolds exhibit an elastic behavior in the wet state with a compressive modulus of 7.96±0.32 MPa. Degradation studies show that SEVA-C scaffolds are susceptible to enzymatic degradation by alpha-amylase, confirmed by the increase of weight loss (40% of weight loss after 12 weeks) and presence of degradation products (reducing sugars) in solution. The diameter of SEVA-C scaffolds decreases with degradation time, increasing the overall porosity, interconnectivity and pore size. In vitro cell studies with human osteosarcoma cell line (SaOs-2) showed a nontoxic and cytocompatible behavior of the developed fibre mesh scaffolds. The positive cellular response, together with structural and degradable properties, suggests that 3D SEVA-C fibre-meshes may be good candidates as tissue engineering scaffolds. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014, 131, 40504. Copyright © 2014 Wiley Periodicals, Inc.This work was supported by national funds through the Portuguese Foundation for Science and Technology under the scope of the project PTDC/CTM/67560/2006 and by the European Regional Development Fund (ERDF) through the Operational Competitiveness Programme “COMPETE” (FCOMP-01-0124-FEDER-007148)

    Solution-Phase Synthesis of Heteroatom-Substituted Carbon Scaffolds for Hydrogen Storage

    Get PDF
    This paper reports a bottom-up solution-phase process for the preparation of pristine and heteroatom (boron, phosphorus, or nitrogen)-substituted carbon scaffolds that show good surface areas and enhanced hydrogen adsorption capacities and binding energies. The synthesis method involves heating chlorine-containing small organic molecules with metallic sodium at reflux in high-boiling solvents. For heteroatom incorporation, heteroatomic electrophiles are added to the reaction mixture. Under the reaction conditions, micrometer-sized graphitic sheets assembled by 3−5 nm-sized domains of graphene nanoflakes are formed, and when they are heteroatom-substituted, the heteroatoms are uniformly distributed. The substituted carbon scaffolds enriched with heteroatoms (boron ~7.3%, phosphorus ~8.1%, and nitrogen ~28.1%) had surface areas as high as 900 m^2 g^(−1) and enhanced reversible hydrogen physisorption capacities relative to pristine carbon scaffolds or common carbonaceous materials. In addition, the binding energies of the substituted carbon scaffolds, as measured by adsorption isotherms, were 8.6, 8.3, and 5.6 kJ mol^(−1) for the boron-, phosphorus-, and nitrogen-enriched carbon scaffolds, respectively

    Bioadditive manufacturing of hybrid tissue scaffolds for controlled release kinetics

    Get PDF
    Development of engineered tissue scaffolds with superior control over cell-protein interactions is still very much infancy. Advancing through heterogeneous multifold scaffolds with controlled release fashion enables synchronization of regenerating tissue with the release kinetics of loaded biomolecules. This might be an engineering challenge and promising approach for improved and efficient tissue regeneration. The most critical limitations: the selection of proper protein(s) incorporation, and precise control over concentration gradient and timing should be overcome. Hence, tissue scaffolds need to be fabricated in a way that proteins or growth factors should be incorporated and released in a specific spatial and temporal orientation to mimic the natural tissue regeneration process. Spatial and temporal control over heterogeneous porous tissue scaffolds can be achieved by controlling two important parameters: (i) internal architecture with enhanced fluid transport, and (ii) distribution of scaffold base material and loaded modifiers. In this research, heterogeneous tissue scaffolds are designed considering both the parameters. Firstly, the three-dimensional porous structures of the scaffold are geometrically partition into functionally uniform porosity regions and controlled spatial micro-architecture has been achieved using a functionally gradient porosity function. The bio-fabrication of the designed internal porous architecture has been performed using a single nozzle bioadditive manufacturing system. The internal architecture scheme is developed to enhance fluid transport with continuous base material deposition Next, the hybrid tissue scaffolds are modeled with varying material characteristics to mediate the release of base material and enclosed biological modifiers are proposed based on tissue engineering requirements. The hybrid scaffolds are fabricated for spatial control of biomolecules and base material to synchronize the release kinetics with tissue regeneration. A pressure-assisted multi-chamber single nozzle bioadditive manufacturing system is used to fabricate hybrid scaffolds

    Surface Modification of Biodegradable Porous Mg Bone Scaffold Using Polycaprolactone/Bioactive Glass Composite

    Get PDF
    A reduction in the degradation rate of magnesium (Mg) and its alloys is in high demand to enable these materials to be used in orthopedic applications. For this purpose, in this paper, a biocompatible polymeric layer reinforced with a bioactive ceramic made of polycaprolactone (PCL) and bioactive glass (BG) was applied on the surface of Mg scaffolds using dip-coating technique under low vacuum. The results indicated that the PCL-BG coated Mg scaffolds exhibited noticeably enhanced bioactivity compared to the uncoated scaffold. Moreover, the mechanical integrity of the Mg scaffolds was improved using the PCL-BG coating on the surface. The stable barrier property of the coatings effectively delayed the degradation activity of Mg scaffold substrates. Moreover, the coatings induced the formation of apatite layer on their surface after immersion in the SBF, which can enhance the biological bone in-growth and block the microcracks and pore channels in the coatings, thus prolonging their protective effect. Furthermore, it was shown that a three times increase in the concentration of PCL-BG noticeably improved the characteristics of scaffolds including their degradation resistance and mechanical stability. Since bioactivity, degradation resistance and mechanical integrity of a bone substitute are the key factors for repairing and healing fractured bones, we suggest that PCL-BG is a suitable coating material for surface modification of Mg scaffolds
    corecore