104,658 research outputs found

    Classical Einstein-Langevin Equation and Proposed Applications

    Full text link
    We propose to formulate a theory for Classical Stochastic Gravity for certain applications in Astrophysics and Cosmology.This involves the Langevin approach in curved spacetime, which is introduced here, in the form of a classical Einstein-Langevin equation.The domain of applications of such an approach and possible outcomes of this formulation which are quite different than its semiclassical counterpart (which is an active area of research), are discussed.This field of study can be seen to emerge out of well established ideas and results in Brownian motion theory as well as the Stochastic Semiclassical Gravity and related issues in Thermodynamics. A brief calculation, to demonstrate the contribution of stochasticty and induce fluctuations to the background spacetime via heuristic solution of the Einstein Langevin equation is given .The applicability of the proposed theme can have a wider expanse than is mentioned in this article

    Effects of fabric counts and weave designs on the properties of laminated woven kenaf carbon fibre reinforced epoxy hybrid composites

    Get PDF
    The effects of different fabric materials namely weave designs (plain and satin) and fabric counts (5 × 5 and 6 × 6) on the properties of laminated woven kenaf/carbon fibre reinforced epoxy hybrid composites were evaluated. The hybrid composites were fabricated from two types of fabric, i.e., woven kenaf that was made from a yarn of 500tex and carbon fibre, by using vacuum infusion technique and epoxy resin as matrix. The panels were tested for tensile, flexural, and impact strengths. The results have revealed that plain fabric is more suitable than satin fabric for obtaining high tensile and impact strengths. Using a fabric count of 5 × 5 has generated composites that are significantly higher in flexural modulus as compared to 6 × 6 which may be attributed to their structure and design. The scanned electron micrographs of the fractured surfaces of the composites demonstrated that plain woven fabric composites had better adhesion properties than satin woven fabric composites, as indicated by the presence of notably lower amount of fibre pull out

    The NASA master directory: Quick reference guide

    Get PDF
    This is a quick reference guide to the NASA Master Directory (MD), which is a free, online, multidisciplinary directory of space and Earth science data sets (NASA and non-NASA data) that are of potential interest to the NASA-sponsored research community. The MD contains high-level descriptions of data sets, other data systems and archives, and campaigns and projects. It provides mechanisms for searching for data sets by important criteria such as geophysical parameters, time, and spatial coverage, and provides information on ordering the data. It also provides automatic connections to a number of data systems such as the NASA Climate Data System, the Planetary Data System, the NASA Ocean Data System, the Pilot Land Data System, and others. The MD includes general information about many data systems, data centers, and coordinated data analysis projects, It represents the first major step in the Catalog Interoperability project, whose objective is to enable researchers to quickly and efficiently identify, obtain information about, and get access to space and Earth science data. The guide describes how to access, use, and exit the MD and lists its features

    The interlaminar fracture toughness of woven graphite/epoxy composites

    Get PDF
    The interlaminar fracture toughness of 2-D graphite/epoxy woven composites was determined as a function of stacking sequence, thickness, and weave pattern. Plain, oxford, 5-harness satin, and 8-harness satin weaves of T300/934 material were evaluated by the double cantilever beam test. The fabric material had a G (sub Ic) ranging from 2 to 8 times greater than 0 degrees unidirectional T300/934 tape material. The interlaminar fracture toughness of a particular weave style was dependent on whether the stacking sequence was symmetric or asymmetric and, in some cases, on the fabric orientation

    Influence of the internal yarn nesting (shifting) on the local structural response of a satin weave composite: an experimental and numerical overview

    Get PDF
    The current paper emphasizes on the effect of internal yarn nesting (shifting) on the local structural response, such as, local stress - strain and the local damage of a satin weave composite. Detailed study of the variation of the local stress – strain behavior in the plies of a satin weave composite leads to the following conclusions: 1) local longitudinal strain in the plies of a satin weave composite is not influenced by the internal yarn nesting of the adjacent plies (position of the ply in the laminate); 2) local transverse stress as well as the weft yarn transverse damage is sensitive to the position of the ply in the laminate
    corecore