979,591 research outputs found

    Signal estimation in cognitive satellite networks for satellite-based industrial internet of things

    Get PDF
    Satellite industrial Internet of Things (IIoT) plays an important role in industrial manufactures without requiring the support of terrestrial infrastructures. However, due to the scarcity of spectrum resources, existing satellite frequency bands cannot satisfy the demand of IIoT, which have to explore other available spectrum resources. Cognitive satellite networks are promising technologies and have the potential to alleviate the shortage of spectrum resources and enhance spectrum efficiency by sharing both spectral and spatial degrees of freedom. For effective signal estimations, multiple features of wireless signals are needed at receivers, the transmissions of which may cause considerable overhead. To mitigate the overhead, part of parameters, such as modulation order, constellation type, and signal to noise ratio (SNR), could be obtained at receivers through signal estimation rather than transmissions from transmitters to receivers. In this article, a grid method is utilized to process the constellation map to obtain its equivalent probability density function. Then, binary feature matrix of the probability density function is employed to construct a cost function to estimate the modulation order and constellation type for multiple quadrature amplitude modulation (MQAM) signal. Finally, an improved M 2 M ∞ method is adopted to realize the SNR estimation of MQAM. Simulation results show that the proposed method is able to accurately estimate the modulation order, constellation type, and SNR of MQAM signal, and these features are extremely useful in satellite-based IIoT

    Satellite height determination using satellite-to-satellite tracking and ground laser systems

    Get PDF
    An attempt was made to use GEOS-C spacecraft height, as measured by the onboard radar altimeter, for an improved determination of the earth's gravitational field and for the determination of the variation of the physical surface of the oceans. Two tracking system approaches to accurately determine the spacecraft height (orbit) are described and their results stated. These are satellite-to-satellite tracking (SST) and ground-laser tracking (GLT). Height variations can be observed in the dm-regions using SST and in the m-region using present GLT

    On the virtualization and dynamic orchestration of satellite communication services

    Get PDF
    Key features of satellite communications such as wide-scale coverage, broadcast/multicast support and high availability, together with significant amounts of new satellite capacity coming online, anticipate new opportunities for satellite communications services as an integral part within upcoming 5G systems. To materialize these opportunities, satellite communications services have to be provisioned and operated in a more flexible, agile and cost-effective manner than done today. In this context, this paper describes a solution for the virtualization and dynamic orchestration of satellite communication services that builds on the introduction of Software Defined Networking (SDN) and Network Function Virtualization (NFV) technologies within the satellite ground segment systems. Along with the description of the main system architecture traits, the flowchart of a general procedure for the dynamic instantiation of virtualized satellite networks on top of a SDN/NFV-enabled satellite ground segment system is provided. The paper also presents experimental results for the dynamic customization of satellite network services through the implementation of a set of virtualized satellite network functions that can be orchestrated over general purpose open virtual platforms.Peer ReviewedPostprint (author's final draft

    Satellite operators as group actions on knot concordance

    Full text link
    Any knot in a solid torus, called a pattern or satellite operator, acts on knots in the 3-sphere via the satellite construction. We introduce a generalization of satellite operators which form a group (unlike traditional satellite operators), modulo a generalization of concordance. This group has an action on the set of knots in homology spheres, using which we recover the recent result of Cochran and the authors that satellite operators with strong winding number ±1\pm 1 give injective functions on topological concordance classes of knots, as well as smooth concordance classes of knots modulo the smooth 4--dimensional Poincare Conjecture. The notion of generalized satellite operators yields a characterization of surjective satellite operators, as well as a sufficient condition for a satellite operator to have an inverse. As a consequence, we are able to construct infinitely many non-trivial satellite operators P such that there is a satellite operator P\overline{P} for which P(P(K))\overline{P}(P(K)) is concordant to K (topologically as well as smoothly in a potentially exotic S3×[0,1]S^3\times [0,1]) for all knots K; we show that these satellite operators are distinct from all connected-sum operators, even up to concordance, and that they induce bijective functions on topological concordance classes of knots, as well as smooth concordance classes of knots modulo the smooth 4--dimensional Poincare Conjecture.Comment: 20 pages, 9 figures; in the second version, we have added several new results about surjectivity of satellite operators, and inverses of satellite operators, and the exposition and structure of the paper have been improve

    Satellite Footprint

    Get PDF

    Post-transcriptional regulation of satellite cell quiescence by TTP-mediated mRNA decay.

    Get PDF
    Skeletal muscle satellite cells in their niche are quiescent and upon muscle injury, exit quiescence, proliferate to repair muscle tissue, and self-renew to replenish the satellite cell population. To understand the mechanisms involved in maintaining satellite cell quiescence, we identified gene transcripts that were differentially expressed during satellite cell activation following muscle injury. Transcripts encoding RNA binding proteins were among the most significantly changed and included the mRNA decay factor Tristetraprolin. Tristetraprolin promotes the decay of MyoD mRNA, which encodes a transcriptional regulator of myogenic commitment, via binding to the MyoD mRNA 3' untranslated region. Upon satellite cell activation, p38α/β MAPK phosphorylates MAPKAP2 and inactivates Tristetraprolin, stabilizing MyoD mRNA. Satellite cell specific knockdown of Tristetraprolin precociously activates satellite cells in vivo, enabling MyoD accumulation, differentiation and cell fusion into myofibers. Regulation of mRNAs by Tristetraprolin appears to function as one of several critical post-transcriptional regulatory mechanisms controlling satellite cell homeostasis

    Satellite Footprint

    Get PDF

    Satellite Footprint

    Get PDF

    Satellite Footprint

    Get PDF
    corecore