320,798 research outputs found

    Salinity Titration Protocol

    Get PDF
    The purpose of this resource is to measure the salinity of the water using a salinity titration kit. Students will measure the salinity of saltwater using a salinity titration kit. Educational levels: Primary elementary, Intermediate elementary, Middle school, High school

    Effects of Salinity on Reproduction and Survival of the Calanoid Copepod Pseudodiaptomus Pelagicus

    Get PDF
    Four experiments were conducted on the calanoid copepod, Pseudodiaptomus pelagicus, to determine the effects of salinity on survival, development time, reproductive output, and population growth in order to define the optimal salinity for culture. To determine the appropriate experimental salinity range we exposed nauplii and adults to abrupt salinity changes from 35 g/L to 5, 10, 15, 35, 42, and 48 g/L at 30 °C and determined survival after 24 hours. The second experiment stocked early stage nauplii into 1 L beakers after which they were cultured using standard procedures for 10 days at six salinities (10, 15, 20, 25, 30, 35 g/L); from this survival, sex ratio, time to maturation, and fecundity were measured. The third experiment evaluated the effects of salinity on brood size, brood interval, and nauplii production by stocking individual adult pairs and monitoring nauplii production daily for 10 days. The fourth experiment determined the effects of salinity on population growth and composition of the population produced by stocking 10 adult pairs and culturing them until five days after the first mature adults were observed. Results from the abrupt salinity change experiment showed nauplii survival decreased following abrupt changes in salinity from 35 g/L to \u3c 15 g/L and \u3e 35 g/L. Additionally, adults do not tolerate rapid changes in salinity from 35 g/L to \u3c 15 g/L but are rather tolerant of changes in salinity up to 48 g/L. Survival from early nauplii to adult was not significantly affected by salinity but survival declined at 35 g/L. Time to first maturation and maturation of the entire population was significantly influenced by salinity and took from 6.3 to 9.5 days. In the individual paired adults experiment, salinity significantly affected nauplii production by affecting brood interval and brood size. The percentage of ovigerous females peaked at 20 g/L and declined at salinities above and below this value. When developing production objectives, aquaculturists must consider salinity because of its numerous effects on the culture of P. pelagicus. The optimal salinity range to achieve high survival and the greatest nauplii production is 15–25 g/L

    Salinity Protocol

    Get PDF
    The purpose of this resource is to measure the salinity of the water at your hydrology site. Students use a hydrometer to measure the specific gravity of the water sample, and use a thermometer to measure the temperature. With these two values, students will use tables to determine the salinity. Educational levels: Intermediate elementary, Middle school, High school, Primary elementary

    Detection of Salinity by the Lobster, Homarus americanus

    Get PDF
    Changes in the heart rates of lobsters (Homarus americanus) were used as an indicator that the animals were capable of sensing a reduction in the salinity of the ambient seawater. The typical response to a gradual (1 to 2 ppt/min) reduction in salinity consisted of a rapid increase in heart rate at a mean threshold of 26.6 ± 0.7 ppt, followed by a reduction in heart rate when the salinity reached 22.1 ± 0.5 ppt. Animals with lesioned cardioregulatory nerves did not exhibit a cardiac response to changes in salinity. A cardiac response was elicited from lobsters exposed to isotonic chloride-free salines but not to isotonic sodium-, magnesium- or calcium-free salines. There was little change in the blood osmolarity of lobsters when bradycardia occurred, suggesting that the receptors involved are external. Furthermore, lobsters without antennae, antennules, or legs showed typical cardiac responses to low salinity, indicating the receptors are not located in these areas. Lobsters exposed to reductions in the salinity of the ambient seawater while both branchial chambers were perfused with full-strength seawater did not display a cardiac response until the external salinity reached 21.6 ± 1.8 ppt. In contrast, when their branchial chambers were exposed to reductions in salinity while the external salinity was maintained at normal levels, changes in heart rate were rapidly elicited in response to very small reductions in salinity (down to 29.5 ± 0.9 ppt in the branchial chamber and 31.5 ± 0.3 ppt externally). We conclude that the primary receptors responsible for detecting reductions in salinity in H. americanus are located within or near the branchial chambers and are primarily sensitive to chloride ions

    Differential Effects of Increasing Salinity on Germination and Seedling Growth of Native and Exotic Invasive Cordgrasses

    Get PDF
    Soil salinity is a key environmental factor influencing germination and seedling establishment in salt marshes. Global warming and sea level rise are changing estuarine salinity, and may modify the colonization ability of halophytes. We evaluated the effects of increasing salinity on germination and seedling growth of native Spartina maritima and invasive S. densiflora from wetlands of the Odiel-Tinto Estuary. Responses were assessed following salinity exposure from fresh water to hypersaline conditions and germination recovery of non-germinated seeds when transferred to fresh water. The germination of both species was inhibited and delayed at high salinities, while pre-exposure to salinity accelerated the speed of germination in recovery assays compared to non-pre-exposed seeds. S. densiflora was more tolerant of salinity at germination than S. maritima. S. densiflora was able to germinate at hypersalinity and its germination percentage decreased at higher salinities compared to S. maritima. In contrast, S. maritima showed higher salinity tolerance in relation to seedling growth. Contrasting results were observed with differences in the tidal elevation of populations. Our results suggest S. maritima is a specialist species with respect to salinity, while S. densiflora is a generalist capable of germination of growth under suboptimal conditions. Invasive S. densiflora has greater capacity than native S. maritima to establish from seed with continued climate change and sea level rise.Ministerio de Educación, Cultura y Deporte (FPU14/06556

    Offsetting with Salinity Credits: An Alternative to Irrigation Zoning

    Get PDF
    Irrigation induced salinity is a serious problem in many countries around the world. In Australia, this type of salinity is most pronounced in the valley of the River Murray in South Australia. Location of irrigation enterprises has been identified as a key factor that needs to be taken into account by policies aimed at mitigating salinity. This article compares and contrasts two such policies: an irrigation zoning policy, where new irrigation enterprises are only allowed in low salinity impact zones, and an offsetting with salinity credits policy, where new irrigation enterprises can locate in high salinity impact zones, provided they offset their salinity impact with salinity credits. Key findings are that the offsetting policy will be both less costly and more effective in reducing salinity than a standalone irrigation zoning policy. This is due to the presence of incentives for choosing "optimal" location of irrigation enterprises when costs of salinity credits are taken into account.irrigation, least-cost, offsets, salinity, Land Economics/Use, Q15, Q18, Q25, Q50,

    Measurement of streaming potential coupling coefficient in sandstones saturated with natural and artificial brines at high selenity

    Get PDF
    We report experimental measurements of the streaming potential coupling coefficient in sandstones saturated with NaCl-dominated artificial and natural brines up to 5.5 M (321.4 g L−1 of NaCl; electrical conductivity of 23 S m−1). We find that the magnitude of the coupling coefficient decreases with increasing brine salinity, as observed in previous experimental studies and predicted by models of the electrical double layer. However, the magnitude of the coupling coefficient remains greater than zero up to the saturated brine salinity. The magnitude of the zeta potential we interpret from our measurements also decreases with increasing brine salinity in the low-salinity domain (0.4 M). We hypothesize that the constant value of zeta potential observed at high salinity reflects the maximum packing of counterions in the diffuse part of the electrical double layer. Our hypothesis predicts that the zeta potential becomes independent of brine salinity when the diffuse layer thickness is similar to the diameter of the hydrated counterion. This prediction is confirmed by our experimental data and also by published measurements on alumina in KCl brine. At high salinity (>0.4 M), values of the streaming potential coupling coefficient and the corresponding zeta potential are the same within experimental error regardless of sample mineralogy and texture and the composition of the brine

    Surface salinity fields in the Arctic Ocean and statistical approaches to predicting anomalies and patterns

    Get PDF
    Significant salinity anomalies have been observed in the Arctic Ocean surface layer during the last decade. Using gridded data of winter salinity in the upper 50 m layer of the Arctic Ocean for the period 1950-1993 and 2007-2012, we investigated the inter-annual variability of the salinity fields, attempted to identify patterns and anomalies, and developed a statistical model for the prediction of surface layer salinity. The statistical model is based on linear regression equations linking the principal components with environmental factors, such as atmospheric circulation, river runoff, ice processes, and water exchange with neighboring oceans. Using this model, we obtained prognostic fields of the surface layer salinity for the winter period 2013-2014. The prognostic fields demonstrated the same tendencies of surface layer freshening that were observed previously. A phase portrait analysis involving the first two principal components exhibits a dramatic shift in behavior of the 2007-2012 data in comparison to earlier observations

    Water calcium concentration modifies whole-body calcium uptake in sea bream larvae during short-term adaptation to altered salinities

    Get PDF
    Whole-body calcium uptake was studied in gilthead sea bream larvae (9–83·mg) in response to changing environmental salinity and [Ca2+]. Calcium uptake increased with increased fish size and salinity. Fish exposed to calcium-enriched, diluted seawater showed increased calcium uptake compared with fish in diluted seawater alone. Calcium uptake was unchanged in Na+- enriched, diluted seawater. Overall, [Ca2+], and not salinity/osmolarity per se, appears to be the main factor contributing to calcium uptake. By contrast, drinking was reduced by a decrease in salinity/osmolarity but was little affected by external [Ca2+]. Calculations of the maximum contribution from drinking-associated calcium uptake showed that it became almost insignificant (less than 10%) through a strong decrease in drinking rate at low salinities (0–8‰). Diluted seawater enriched in calcium to the concentration present in full-strength seawater (i.e. constant calcium, decreasing salinity) restored intestinal calcium uptake to normal. Extra-intestinal calcium uptake also benefited from calcium addition but to a lesser extent

    Spatiotemporal variability in the O-18-salinity relationship of seawater across the tropical Pacific Ocean

    Full text link
    The relationship between salinity and the stable oxygen isotope ratio of seawater (δ18Osw) is of utmost importance to the quantitative reconstruction of past changes in salinity from δ18O values of marine carbonates. This relationship is often considered to be uniform across water masses, but the constancy of the δ18Osw-salinity relationship across space and time remains uncertain, as δ18Osw responds to varying atmospheric vapor sources and pathways, while salinity does not. Here we present new δ18Osw-salinity data from sites spanning the tropical Pacific Ocean. New data from Palau, Papua New Guinea, Kiritimati, and Galápagos show slopes ranging from 0.09 ‰/psu in the Galápagos to 0.32‰/psu in Palau. The slope of the δ18Osw-salinity relationship is higher in the western tropical Pacific versus the eastern tropical Pacific in observations and in two isotope-enabled climate model simulations. A comparison of δ18Osw-salinity relationships derived from short-term spatial surveys and multiyear time series at Papua New Guinea and Galápagos suggests spatial relationships can be substituted for temporal relationships at these sites, at least within the time period of the investigation. However, the δ18Osw-salinity relationship varied temporally at Palau, likely in response to water mass changes associated with interannual El Niño–Southern Oscillation (ENSO) variability, suggesting nonstationarity in this local δ18Osw-salinity relationship. Applying local δ18Osw-salinity relationships in a coral δ18O forward model shows that using a constant, basinwide δ18Osw-salinity slope can both overestimate and underestimate the contribution of δ18Osw to carbonate δ18O variance at individual sites in the western tropical Pacific.We are grateful for the dedicated water samplers who enabled this research: Lori J. Bell and Gerda Ucharm of the Coral Reef Research Foundation, Palau; Rosa Maritza Motoche Gonzalez and the Fuerza Aerea Ecuatoriana, Santa Cruz, Galapagos, Ecuador; Taonateiti Kabiri and the students of Tennessee Primary School, London, Kiritimati; and the Manus Weather Observers, U.S. Department of Energy ARM Climate Research Facility, Manus, Papua New Guinea. We would like to thank the Galapagos National Park, the Kiritimati Ministry of Environment Lands and Agricultural Development for sample permits, and the Charles Darwin Research Station for logistical support. Funding sources for this work includes NSF-AGS-PF 1049664 to J.L.C., NSF P2C2-1203785 to K.M.C., J.L.C., and D.N. This research was also supported by the Office of Biological and Environment Research of the U.S. Department of Energy as part of the Atmospheric Radiation Measurement Climate Research Facility. Isotope data are available as supporting information associated with the manuscript. (1049664 - NSF-AGS-PF; P2C2-1203785 - NSF; Office of Biological and Environment Research of the U.S. Department of Energy as part of the Atmospheric Radiation Measurement Climate Research Facility
    corecore