496,394 research outputs found
Corporation robots
Nowadays, various robots are built to perform multiple tasks. Multiple robots working
together to perform a single task becomes important. One of the key elements for multiple
robots to work together is the robot need to able to follow another robot. This project is
mainly concerned on the design and construction of the robots that can follow line. In this
project, focuses on building line following robots leader and slave. Both of these robots will
follow the line and carry load. A Single robot has a limitation on handle load capacity such as
cannot handle heavy load and cannot handle long size load. To overcome this limitation an
easier way is to have a groups of mobile robots working together to accomplish an aim that
no single robot can do alon
A Framework for Interactive Teaching of Virtual Borders to Mobile Robots
The increasing number of robots in home environments leads to an emerging
coexistence between humans and robots. Robots undertake common tasks and
support the residents in their everyday life. People appreciate the presence of
robots in their environment as long as they keep the control over them. One
important aspect is the control of a robot's workspace. Therefore, we introduce
virtual borders to precisely and flexibly define the workspace of mobile
robots. First, we propose a novel framework that allows a person to
interactively restrict a mobile robot's workspace. To show the validity of this
framework, a concrete implementation based on visual markers is implemented.
Afterwards, the mobile robot is capable of performing its tasks while
respecting the new virtual borders. The approach is accurate, flexible and less
time consuming than explicit robot programming. Hence, even non-experts are
able to teach virtual borders to their robots which is especially interesting
in domains like vacuuming or service robots in home environments.Comment: 7 pages, 6 figure
Ono: an open platform for social robotics
In recent times, the focal point of research in robotics has shifted from industrial ro- bots toward robots that interact with humans in an intuitive and safe manner. This evolution has resulted in the subfield of social robotics, which pertains to robots that function in a human environment and that can communicate with humans in an int- uitive way, e.g. with facial expressions. Social robots have the potential to impact many different aspects of our lives, but one particularly promising application is the use of robots in therapy, such as the treatment of children with autism. Unfortunately, many of the existing social robots are neither suited for practical use in therapy nor for large scale studies, mainly because they are expensive, one-of-a-kind robots that are hard to modify to suit a specific need. We created Ono, a social robotics platform, to tackle these issues. Ono is composed entirely from off-the-shelf components and cheap materials, and can be built at a local FabLab at the fraction of the cost of other robots. Ono is also entirely open source and the modular design further encourages modification and reuse of parts of the platform
- …
