70 research outputs found

    High-Dimensional Metrics in R

    Full text link
    The package High-dimensional Metrics (\Rpackage{hdm}) is an evolving collection of statistical methods for estimation and quantification of uncertainty in high-dimensional approximately sparse models. It focuses on providing confidence intervals and significance testing for (possibly many) low-dimensional subcomponents of the high-dimensional parameter vector. Efficient estimators and uniformly valid confidence intervals for regression coefficients on target variables (e.g., treatment or policy variable) in a high-dimensional approximately sparse regression model, for average treatment effect (ATE) and average treatment effect for the treated (ATET), as well for extensions of these parameters to the endogenous setting are provided. Theory grounded, data-driven methods for selecting the penalization parameter in Lasso regressions under heteroscedastic and non-Gaussian errors are implemented. Moreover, joint/ simultaneous confidence intervals for regression coefficients of a high-dimensional sparse regression are implemented, including a joint significance test for Lasso regression. Data sets which have been used in the literature and might be useful for classroom demonstration and for testing new estimators are included. \R and the package \Rpackage{hdm} are open-source software projects and can be freely downloaded from CRAN: \texttt{http://cran.r-project.org}.Comment: 34 pages; vignette for the R package hdm, available at http://cran.r-project.org/web/packages/hdm/ and http://r-forge.r-project.org/R/?group_id=2084 (development version

    lassopack: Model selection and prediction with regularized regression in Stata

    Get PDF
    This article introduces lassopack, a suite of programs for regularized regression in Stata. lassopack implements lasso, square-root lasso, elastic net, ridge regression, adaptive lasso and post-estimation OLS. The methods are suitable for the high-dimensional setting where the number of predictors pp may be large and possibly greater than the number of observations, nn. We offer three different approaches for selecting the penalization (`tuning') parameters: information criteria (implemented in lasso2), KK-fold cross-validation and hh-step ahead rolling cross-validation for cross-section, panel and time-series data (cvlasso), and theory-driven (`rigorous') penalization for the lasso and square-root lasso for cross-section and panel data (rlasso). We discuss the theoretical framework and practical considerations for each approach. We also present Monte Carlo results to compare the performance of the penalization approaches.Comment: 52 pages, 6 figures, 6 tables; submitted to Stata Journal; for more information see https://statalasso.github.io

    Random lasso

    Full text link
    We propose a computationally intensive method, the random lasso method, for variable selection in linear models. The method consists of two major steps. In step 1, the lasso method is applied to many bootstrap samples, each using a set of randomly selected covariates. A measure of importance is yielded from this step for each covariate. In step 2, a similar procedure to the first step is implemented with the exception that for each bootstrap sample, a subset of covariates is randomly selected with unequal selection probabilities determined by the covariates' importance. Adaptive lasso may be used in the second step with weights determined by the importance measures. The final set of covariates and their coefficients are determined by averaging bootstrap results obtained from step 2. The proposed method alleviates some of the limitations of lasso, elastic-net and related methods noted especially in the context of microarray data analysis: it tends to remove highly correlated variables altogether or select them all, and maintains maximal flexibility in estimating their coefficients, particularly with different signs; the number of selected variables is no longer limited by the sample size; and the resulting prediction accuracy is competitive or superior compared to the alternatives. We illustrate the proposed method by extensive simulation studies. The proposed method is also applied to a Glioblastoma microarray data analysis.Comment: Published in at http://dx.doi.org/10.1214/10-AOAS377 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    A Bootstrap Lasso + Partial Ridge Method to Construct Confidence Intervals for Parameters in High-dimensional Sparse Linear Models

    Full text link
    Constructing confidence intervals for the coefficients of high-dimensional sparse linear models remains a challenge, mainly because of the complicated limiting distributions of the widely used estimators, such as the lasso. Several methods have been developed for constructing such intervals. Bootstrap lasso+ols is notable for its technical simplicity, good interpretability, and performance that is comparable with that of other more complicated methods. However, bootstrap lasso+ols depends on the beta-min assumption, a theoretic criterion that is often violated in practice. Thus, we introduce a new method, called bootstrap lasso+partial ridge, to relax this assumption. Lasso+partial ridge is a two-stage estimator. First, the lasso is used to select features. Then, the partial ridge is used to refit the coefficients. Simulation results show that bootstrap lasso+partial ridge outperforms bootstrap lasso+ols when there exist small, but nonzero coefficients, a common situation that violates the beta-min assumption. For such coefficients, the confidence intervals constructed using bootstrap lasso+partial ridge have, on average, 50%50\% larger coverage probabilities than those of bootstrap lasso+ols. Bootstrap lasso+partial ridge also has, on average, 35%35\% shorter confidence interval lengths than those of the de-sparsified lasso methods, regardless of whether the linear models are misspecified. Additionally, we provide theoretical guarantees for bootstrap lasso+partial ridge under appropriate conditions, and implement it in the R package "HDCI.

    An Algorithmic Framework for Computing Validation Performance Bounds by Using Suboptimal Models

    Full text link
    Practical model building processes are often time-consuming because many different models must be trained and validated. In this paper, we introduce a novel algorithm that can be used for computing the lower and the upper bounds of model validation errors without actually training the model itself. A key idea behind our algorithm is using a side information available from a suboptimal model. If a reasonably good suboptimal model is available, our algorithm can compute lower and upper bounds of many useful quantities for making inferences on the unknown target model. We demonstrate the advantage of our algorithm in the context of model selection for regularized learning problems
    • …
    corecore