4,473 research outputs found
Assessment of the microbial communities associated with white syndrome and brown jelly syndrome in aquarium corals
Bacterial and ciliate assemblages associated with aquarium corals displaying white syndrome (WS) and brown jelly syndrome (BJS) were investigated. Healthy (n = 10) and diseased corals (WS n = 18; BJS n = 3) were analysed for 16S rRNA gene bacterial diversity, total bacterial abundance and vibrio-specific 16S rRNA gene abundance. This was conducted alongside analysis of 18S rRNA gene sequenc-ing targeting ciliates, a group of organisms largely overlooked for their potential as causal agents of coral disease. Despite significant differences between healthy and diseased corals in their 16S rRNA gene bacterial diversity, total bacterial abundance and vibrio-specific rRNA gene abundance, no domi-nant bacterial ribotypes were found consistently within the diseased samples. In contrast, one ciliate morphotype, named Morph 3 in this study (GenBank Accession Numbers JF831358 for the ciliate isolated from WS and JF831359 for the ciliate isolated from BJS) was observed to burrow into and underneath the coral tissues at the disease lesion in both disease types and contained algal endosym-bionts indicative of coral tissue ingestion. This ciliate was observed in larger numbers in BJS compared to WS, giving rise to the characteristic jelly like substance in BJS. Morph 3 varied by only 1 bp over 549 bp from the recently described Morph 1 ciliate (GenBank Accession No. JN626268), which has been shown to be present in field samples of WS and Brown Band Disease (BrB) in the Indo-Pacific. This result indicates a close relationship between these aquarium diseases and those observed in the wild
Genetic Diversity and Potential Function of Microbial Symbionts Associated with Newly Discovered Species of Osedax Polychaete Worms
We investigated the genetic diversity of symbiotic bacteria associated with two newly discovered species of Osedax from Monterey Canyon, CA, at 1,017-m (Osedax Monterey Bay sp. 3 "rosy" [Osedax sp. MB3]) and 381-m (Osedax Monterey Bay sp. 4 "yellow collar") depths. Quantitative PCR and clone libraries of 16S rRNA gene sequences identified differences in the compositions and abundances of bacterial phylotypes associated with the newly discovered host species and permitted comparisons between adult Osedax frankpressi and juveniles that had recently colonized whalebones implanted at 2,891 m. The newly discovered Osedax species hosted Oceanospirillales symbionts that are related to Gammaproteobacteria associated with the previously described O. frankpressi and Osedax rubiplumus (S. K. Goffredi, V. J. Orphan, G. W. Rouse, L. Jahnke, T. Embaye, K. Turk, R. Lee, and R. C. Vrijenhoek, Environ. Microbiol. 7:1369-1378, 2005). In addition, Osedax sp. MB3 hosts a diverse and abundant population of additional bacteria dominated by Epsilonproteobacteria. Ultrastructural analysis of symbiont-bearing root tissues verified the enhanced microbial diversity of Osedax sp. MB3. Root tissues from the newly described host species and O. frankpressi all exhibited collagenolytic enzyme activity, which covaried positively with the abundance of symbiont DNA and negatively with mean adult size of the host species. Members of this unusual genus of bone-eating worms may form variable associations with symbiotic bacteria that allow for the observed differences in colonization and success in whale fall environments throughout the world's oceans
Archaeal diversity in deep-sea sediments estimated by means of different Terminal-Restriction Fragment Length Polymorphisms (T-RFLP) protocols
Despite the increasing recognition of the quantitative importance of Archaea in all marine systems, the protocols for a rapid estimate of Archaeal diversity patterns in deep-sea sediments have been only poorly tested yet. We collected sediment samples from 11 deep-sea sites covering a wide latitudinal range (from 79°N to 36°N, at depths comprised from 469 to 5500 m) and compared the performance of two different primer sets (ARCH21f/ARCH958r and ARCH109f/ARCH 915r) and three restriction enzymes (AluI, Rsa I and HaeIII) for the fingerprinting analysis (T-RFLP) of Archaeal diversity. In silico and experimental analyses consistently indicated that different combinations of primer sets and restriction enzymes can result in different values of benthic Archaeal ribotype richness and different Archaeal assemblage compositions. The use of the ARCH109f/ARCH 915r primer set in combination with AluI provided the best results (a number ribotypes up to 4-folds higher than other combinations), suggesting that this primer set should be used in future studies dealing with the analysis of the patterns of Archaeal diversity in deep-sea sediments. Multivariate, multiple regression analysis revealed that, whatever the T-RFLP protocol utilized, latitude and temperature explained most of the variance in benthic Archaeal ribotype richness, while water depth had a negligible role
Next generation sequencing analysis reveals a relationship between rDNA unit diversity and locus number in Nicotiana diploids
© 2012 Matyášek et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited
Application of ribotyping and IS<i>200</i> fingerprinting to distinguish the five <i>Salmonella</i> serotype O6,7:c:1,5 groups: Choleraesuis <i>sensu stricto</i>, Choleraesuis var. Kunzendorf, Choleraesuis var. Decatur, Paratyphi C, and Typhisuis
Sixty-seven strains of the five described Salmonella serotypes having antigens 6,7:c: 1,5, that is
S. enterica serotype Choleraesuis sensu stricto, Choleraesuis var. Kunzendorf, Choleraesuis var.
Decatur, Paratyphi C, and Typhisuis, were examined for 16S rrn profile ribotype, presence of
IS200 and phenotypic characters, including rate of change of flagellar-antigen phase and
nutritional character. Choleraesuis sensu stricto and its Kunzendorf variant had related but
distinct ribotypes. Therefore, ribotyping appears to be a suitable method for differentiating
Choleraesuis non-Kunzendorf from Choleraesuis var. Kunzendorf. Some strains of Paratyphi C
had 16S profiles that resembled that of Choleraesuis non-Kunzendorf, while others resembled
that of Choleraesuis var. Kunzendorf. The Typhisuis profiles were like those of Choleraesuis
non-Kunzendorf, while the Choleraesuis var. Decatur profiles were unlike those of any of the
other four groups. Furthermore, IS200 fingerprinting discriminated between Choleraesuis var.
Decatur and the other strains with antigenic formula O6,7:c: 1,5, and comparison of IS200
patterns showed a high degree of genetic divergence within Choleraesuis var. Decatur. Our
findings show that ribotyping and IS200 fingerprinting, combined with classical microbiological
methods, distinguish the groups Choleraesuis non-Kunzendorf, Choleraesuis var. Kunzendorf,
Choleraesuis var. Decatur, Paratyphi C and Typhisuis
Molecular and morphological phylogenetics of the digitate-tubered clade within subtribe Orchidinae s.s. (Orchidaceae: Orchideae)
The digitate-tubered clade (Dactylorhiza s.l. plus Gymnadenia s.l.) within subtribe Orchidinae is an important element of the North-temperate orchid flora and has become a model system for studying the genetic and epigenetic consequences of organism-wide ploidy change. Here, we integrate morphological phylogenetics with Sanger sequencing of nrITS and the plastid region trnL-F in order to explore phylogenetic relationships and phenotypic character evolution within the clade. The resulting morphological phylogenies are strongly incongruent with the molecular phylogenies, instead reconstructing through parsimony the genus-level boundaries recognised by traditional 20th Century taxonomy. They raise fresh doubts concerning whether Pseudorchis is sister to Platanthera or to Dactylorhiza plus Gymnadenia. Constraining the morphological matrix to the topology derived from ITS sequences increased tree length by 20%, adding considerably to the already exceptional level of phenotypic homoplasy. Both molecular and morphological trees agree that D. viridis and D. iberica are the earliest- diverging species within Dactylorhiza (emphasising the redundancy of the former genus Coeloglossum). Morphology and ITS both suggest that the former genus Nigritella is nested within (and thus part of) Gymnadenia, the Pyrenean endemic 'N.' gabasiana apparently forming a molecular bridge between the two radically contrasting core phenotypes. Comparatively short subtending molecular branches plus widespread (though sporadic) hybridisation indicate that Dactylorhiza and Gymnadenia approximate the minimum level of molecular divergence acceptable in sister genera. They share similar tuber morphologies and base chromosome numbers, and both genera are unusually prone to polyploid speciation. Another prominent feature of multiple speciation events within Gymnadenia is floral paedomorphosis. The 'traditional' morphological and candidate-gene approaches to phylogeny reconstruction are critically appraised.Peer reviewedFinal Published versio
Tracking Bacterial Pollution Sources in Stormwater Pipes
The New Hampshire Department of Environmental Services (DES) conducted two rounds of wet weather sampling in the Hampton Harbor watershed during 2002. Samples were collected from stormdrains, tributaries, and harbor stations for bacteria and flow in order to calculate bacteria loads. This information was needed to prioritize pollution sources as part of a Total Maximum Daily Load (TMDL) study of bacteria in Hampton Harbor (Trowbridge, 2003). Two of the 16 monitored stormdrain pipes were selected for microbial source determination using ribotype profiling. Stormdrain pipe selection was based on the bacteria loading data from the first wet weather sampling that occurred on 7/23/02. The two sampling sites identified as HHPS069 and HHPS182 contributed 12% and 60%, respectively, of the bacteria load from the 16 monitored stormdrains during the first storm event. It was determined that these two pipes would be targeted for more intensive investigations based on the high relative loading of bacteria. Thus, samples were collected during a second storm on October 16, 2002 from these two pipes and analyzed for source species identification using ribotype profiling
Genome characterization and population genetic structure of the zoonotic pathogen, streptococcus canis
Background - Streptococcus canis is an important opportunistic pathogen of dogs and cats that can also infect a wide range of additional mammals including cows where it can cause mastitis. It is also an emerging human pathogen.
Results - Here we provide characterization of the first genome sequence for this species, strain FSL S3-227 (milk isolate from a cow with an intra-mammary infection). A diverse array of putative virulence factors was encoded by the S. canis FSL S3-227 genome. Approximately 75% of these gene sequences were homologous to known Streptococcal virulence factors involved in invasion, evasion, and colonization. Present in the genome are multiple potentially mobile genetic elements (MGEs) [plasmid, phage, integrative conjugative element (ICE)] and comparison to other species provided convincing evidence for lateral gene transfer (LGT) between S. canis and two additional bovine mastitis causing pathogens (Streptococcus agalactiae, and Streptococcus dysgalactiae subsp. dysgalactiae), with this transfer possibly contributing to host adaptation. Population structure among isolates obtained from Europe and USA [bovine = 56, canine = 26, and feline = 1] was explored. Ribotyping of all isolates and multi locus sequence typing (MLST) of a subset of the isolates (n = 45) detected significant differentiation between bovine and canine isolates (Fisher exact test: P = 0.0000 [ribotypes], P = 0.0030 [sequence types]), suggesting possible host adaptation of some genotypes. Concurrently, the ancestral clonal complex (54% of isolates) occurred in many tissue types, all hosts, and all geographic locations suggesting the possibility of a wide and diverse niche.
Conclusion - This study provides evidence highlighting the importance of LGT in the evolution of the bacteria S. canis, specifically, its possible role in host adaptation and acquisition of virulence factors. Furthermore, recent LGT detected between S. canis and human bacteria (Streptococcus urinalis) is cause for concern, as it highlights the possibility for continued acquisition of human virulence factors for this emerging zoonotic pathogen
Circulation of Highly Drug-Resistant Clostridium difficile Ribotypes 027 and 001 in Two Tertiary-Care Hospitals in Mexico
© 2018, Mary Ann Liebert, Inc.OBJECTIVE: To assess drug susceptibility and characterize Clostridium difficile ribotypes in isolates from two tertiary-care hospitals in Mexico. METHODS: Isolates were evaluated for genotyping, antimicrobial susceptibility testing and detection of mutations associated with drug resistance. PCR ribotyping was performed using a combination of gel-based and capillary electrophoresis-based approaches. RESULTS: MIC50 and MIC90 were ≥128 mg/L for ciprofloxacin, erythromycin, clindamycin, and rifampicin. There was no reduced susceptibility to metronidazole or tetracycline; however, reduced susceptibility to vancomycin (≥4 mg/L) and fidaxomicin (≥2 mg/L) was detected in 50 (40.3%) and 4 (3.2%) isolates, respectively. Furthermore, the rpoB Arg505Lys mutation was more frequently detected in isolates with high minimum inhibitory concentration (MIC) to rifampicin (≥32 mg/L) (OR = 52.5; 95% CI = 5.17-532.6; p < 0.000). Of the 124 C. difficile isolates recovered, 84 (66.7%) were of ribotype 027, 18 (14.5%) of ribotype 001, and the remainder were other ribotypes (353, 255, 220, 208, 176, 106, 076, 020, 019, 017, 014, 012, 003, and 002). CONCLUSION: Ribotypes 027 and 001 were the most frequent C. difficile isolates recovered in this study, and demonstrated higher MICs. Furthermore, we found four isolates with reduced susceptibility to fidaxomicin, raising a concern since this drug is currently unavailable in Mexican Hospitals.Peer reviewedFinal Accepted Versio
- …
