7,198 research outputs found

    Parameterized Verification of Graph Transformation Systems with Whole Neighbourhood Operations

    Full text link
    We introduce a new class of graph transformation systems in which rewrite rules can be guarded by universally quantified conditions on the neighbourhood of nodes. These conditions are defined via special graph patterns which may be transformed by the rule as well. For the new class for graph rewrite rules, we provide a symbolic procedure working on minimal representations of upward closed sets of configurations. We prove correctness and effectiveness of the procedure by a categorical presentation of rewrite rules as well as the involved order, and using results for well-structured transition systems. We apply the resulting procedure to the analysis of the Distributed Dining Philosophers protocol on an arbitrary network structure.Comment: Extended version of a submittion accepted at RP'14 Worksho

    Transducers from Rewrite Rules with Backreferences

    Full text link
    Context sensitive rewrite rules have been widely used in several areas of natural language processing, including syntax, morphology, phonology and speech processing. Kaplan and Kay, Karttunen, and Mohri & Sproat have given various algorithms to compile such rewrite rules into finite-state transducers. The present paper extends this work by allowing a limited form of backreferencing in such rules. The explicit use of backreferencing leads to more elegant and general solutions.Comment: 8 pages, EACL 1999 Berge

    Rewriting Modulo \beta in the \lambda\Pi-Calculus Modulo

    Full text link
    The lambda-Pi-calculus Modulo is a variant of the lambda-calculus with dependent types where beta-conversion is extended with user-defined rewrite rules. It is an expressive logical framework and has been used to encode logics and type systems in a shallow way. Basic properties such as subject reduction or uniqueness of types do not hold in general in the lambda-Pi-calculus Modulo. However, they hold if the rewrite system generated by the rewrite rules together with beta-reduction is confluent. But this is too restrictive. To handle the case where non confluence comes from the interference between the beta-reduction and rewrite rules with lambda-abstraction on their left-hand side, we introduce a notion of rewriting modulo beta for the lambda-Pi-calculus Modulo. We prove that confluence of rewriting modulo beta is enough to ensure subject reduction and uniqueness of types. We achieve our goal by encoding the lambda-Pi-calculus Modulo into Higher-Order Rewrite System (HRS). As a consequence, we also make the confluence results for HRSs available for the lambda-Pi-calculus Modulo.Comment: In Proceedings LFMTP 2015, arXiv:1507.0759

    Linear Compressed Pattern Matching for Polynomial Rewriting (Extended Abstract)

    Full text link
    This paper is an extended abstract of an analysis of term rewriting where the terms in the rewrite rules as well as the term to be rewritten are compressed by a singleton tree grammar (STG). This form of compression is more general than node sharing or representing terms as dags since also partial trees (contexts) can be shared in the compression. In the first part efficient but complex algorithms for detecting applicability of a rewrite rule under STG-compression are constructed and analyzed. The second part applies these results to term rewriting sequences. The main result for submatching is that finding a redex of a left-linear rule can be performed in polynomial time under STG-compression. The main implications for rewriting and (single-position or parallel) rewriting steps are: (i) under STG-compression, n rewriting steps can be performed in nondeterministic polynomial time. (ii) under STG-compression and for left-linear rewrite rules a sequence of n rewriting steps can be performed in polynomial time, and (iii) for compressed rewrite rules where the left hand sides are either DAG-compressed or ground and STG-compressed, and an STG-compressed target term, n rewriting steps can be performed in polynomial time.Comment: In Proceedings TERMGRAPH 2013, arXiv:1302.599

    Verification of Timed Automata Using Rewrite Rules and Strategies

    Full text link
    ELAN is a powerful language and environment for specifying and prototyping deduction systems in a language based on rewrite rules controlled by strategies. Timed automata is a class of continuous real-time models of reactive systems for which efficient model-checking algorithms have been devised. In this paper, we show that these algorithms can very easily be prototyped in the ELAN system. This paper argues through this example that rewriting based systems relying on rules and strategies are a good framework to prototype, study and test rather efficiently symbolic model-checking algorithms, i.e. algorithms which involve combination of graph exploration rules, deduction rules, constraint solving techniques and decision procedures

    Towards explicit rewrite rules in the λΠ-calculus modulo

    Get PDF
    International audienceThis paper provides a new presentation of the λΠ-calculus modulo where the addition of rewrite rules is made explicit. The λΠ-calculus modulo is a variant of the λ-calculus with dependent types where β-reduction is extended with user-defined rewrite rules. Its expressiveness makes it suitable to serve as an output language for theorem provers, certified development tools or proof assistants. Addition of rewrite rules becomes an iterative process and rules previously added can be used to type new rules. We also discuss the condition rewrite rules must satisfy in order to preserve the Subject Reduction property and we give a criterion weaker than the usual one. Finally we describe the new version of Dedukti, a type-checker for the λΠ-calculus modulo for which we assess its efficiency in comparison with Coq, Twelf and Maude
    corecore