1,896,489 research outputs found

    A comparison of alternative methods to construct confidence intervals for the estimate of a break date in linear regression models

    Full text link
    This article considers constructing confidence intervals for the date of a structural break in linear regression models. Using extensive simulations, we compare the performance of various procedures in terms of exact coverage rates and lengths of the confidence intervals. These include the procedures of Bai (1997 Bai, J. (1997). Estimation of a change point in multiple regressions. Review of Economics and Statistics 79:551–563.) based on the asymptotic distribution under a shrinking shift framework, Elliott and Müller (2007 Elliott, G., Müller, U. (2007). Confidence sets for the date of a single break in linear time series regressions. Journal of Econometrics 141:1196–1218.) based on inverting a test locally invariant to the magnitude of break, Eo and Morley (2015 Eo, Y., Morley, J. (2015). Likelihood-ratio-based confidence sets for the timing of structural breaks. Quantitative Economics 6:463–497.[Crossref], [Web of Science ®], [Google Scholar]) based on inverting a likelihood ratio test, and various bootstrap procedures. On the basis of achieving an exact coverage rate that is closest to the nominal level, Elliott and Müller's (2007 Elliott, G., Müller, U. (2007). Confidence sets for the date of a single break in linear time series regressions. Journal of Econometrics 141:1196–1218.) approach is by far the best one. However, this comes with a very high cost in terms of the length of the confidence intervals. When the errors are serially correlated and dealing with a change in intercept or a change in the coefficient of a stationary regressor with a high signal-to-noise ratio, the length of the confidence interval increases and approaches the whole sample as the magnitude of the change increases. The same problem occurs in models with a lagged dependent variable, a common case in practice. This drawback is not present for the other methods, which have similar properties. Theoretical results are provided to explain the drawbacks of Elliott and Müller's (2007 Elliott, G., Müller, U. (2007). Confidence sets for the date of a single break in linear time series regressions. Journal of Econometrics 141:1196–1218.) method

    Belief revision in the propositional closure of a qualitative algebra

    Get PDF
    Belief revision is an operation that aims at modifying old be-liefs so that they become consistent with new ones. The issue of belief revision has been studied in various formalisms, in particular, in qualitative algebras (QAs) in which the result is a disjunction of belief bases that is not necessarily repre-sentable in a QA. This motivates the study of belief revision in formalisms extending QAs, namely, their propositional clo-sures: in such a closure, the result of belief revision belongs to the formalism. Moreover, this makes it possible to define a contraction operator thanks to the Harper identity. Belief revision in the propositional closure of QAs is studied, an al-gorithm for a family of revision operators is designed, and an open-source implementation is made freely available on the web

    A comparison of alternative methods to construct confidence intervals for the estimate of a break date in linear regression models

    Full text link
    This article considers constructing confidence intervals for the date of a structural break in linear regression models. Using extensive simulations, we compare the performance of various procedures in terms of exact coverage rates and lengths of the confidence intervals. These include the procedures of Bai (1997 Bai, J. (1997). Estimation of a change point in multiple regressions. Review of Economics and Statistics 79:551–563.) based on the asymptotic distribution under a shrinking shift framework, Elliott and Müller (2007 Elliott, G., Müller, U. (2007). Confidence sets for the date of a single break in linear time series regressions. Journal of Econometrics 141:1196–1218.) based on inverting a test locally invariant to the magnitude of break, Eo and Morley (2015 Eo, Y., Morley, J. (2015). Likelihood-ratio-based confidence sets for the timing of structural breaks. Quantitative Economics 6:463–497.) based on inverting a likelihood ratio test, and various bootstrap procedures. On the basis of achieving an exact coverage rate that is closest to the nominal level, Elliott and Müller's (2007 Elliott, G., Müller, U. (2007). Confidence sets for the date of a single break in linear time series regressions. Journal of Econometrics 141:1196–1218.) approach is by far the best one. However, this comes with a very high cost in terms of the length of the confidence intervals. When the errors are serially correlated and dealing with a change in intercept or a change in the coefficient of a stationary regressor with a high signal-to-noise ratio, the length of the confidence interval increases and approaches the whole sample as the magnitude of the change increases. The same problem occurs in models with a lagged dependent variable, a common case in practice. This drawback is not present for the other methods, which have similar properties. Theoretical results are provided to explain the drawbacks of Elliott and Müller's (2007 Elliott, G., Müller, U. (2007). Confidence sets for the date of a single break in linear time series regressions. Journal of Econometrics 141:1196–1218 method
    corecore