87,294 research outputs found

    Towards an ontology-based platform-independent framework for developing KBE systems in the aerospace industry

    Get PDF
    Aerospace engineering is considered to be one of the most complex and advanced branches of engineering. The use of knowledge based engineering (KBE) technologies has played a major role in automating routine design activities in view of supporting the cost-effective and timely development of a product. However, technologies employed within KBE systems are usually platform-specific. The nature of these platform-specific models has significantly limited knowledge abstraction and reusability in KBE systems. This research paper presents a novel approach that illustrates the use of platform-independent knowledge models for the development of KBE systems in the aerospace industry. The use of semantic technologies through the definition of generic-purposed ontologies has been employed to support the notion of independent knowledge models that strengthens knowledge reusability in KBE systems. This approach has been validated qualitatively through experts’ opinion and its benefit realised in the abstraction, reusability and maintainability of KBE systems

    An SSE approach to reusability

    Get PDF
    The SSE project has engineering analysis and design efforts under way for the development of the SSE reusability library management system. An ad hoc committee on reuse has been meeting for several months identifying design considerations and learning about Ruben Prieto-Diaz faceted classification, CAMP domain analysis, SPC activities, SEI activities, and SPS activities. A standard format was developed for the Ada prologue for reusable components (both specification and body). The SSE reusability process can be viewed as a transformation process with minimized losses and difficulties

    Interactivity within IMS Learning Design and Question and Test Interoperability

    No full text
    We examine the integration of IMS Question and Test Interoperability (QTI) and IMS Learning Design (LD) in implementations of E-learning from both pedagogical and technological points of view. We propose the use of interactivity as a parameter to evaluate the quality of assessment and E-learning, and assess various cases of individual and group study for their interactivity, ease of coding, flexibility, and reusability. We conclude that presenting assessments using IMS QTI provides flexibility and reusability within an IMS LD Unit Of Learning (UOL) for individual study. For group study, however, the use of QTI items may involve coding difficulties if group members need to wait for their feedback until all students have attempted a question, and QTI items may not be able to be used at all if the QTI services are implemented within a service-oriented architecture
    corecore