659,507 research outputs found

    Unsupervised Triplet Hashing for Fast Image Retrieval

    Full text link
    Hashing has played a pivotal role in large-scale image retrieval. With the development of Convolutional Neural Network (CNN), hashing learning has shown great promise. But existing methods are mostly tuned for classification, which are not optimized for retrieval tasks, especially for instance-level retrieval. In this study, we propose a novel hashing method for large-scale image retrieval. Considering the difficulty in obtaining labeled datasets for image retrieval task in large scale, we propose a novel CNN-based unsupervised hashing method, namely Unsupervised Triplet Hashing (UTH). The unsupervised hashing network is designed under the following three principles: 1) more discriminative representations for image retrieval; 2) minimum quantization loss between the original real-valued feature descriptors and the learned hash codes; 3) maximum information entropy for the learned hash codes. Extensive experiments on CIFAR-10, MNIST and In-shop datasets have shown that UTH outperforms several state-of-the-art unsupervised hashing methods in terms of retrieval accuracy

    Translation Memory Retrieval Methods

    Get PDF
    Translation Memory (TM) systems are one of the most widely used translation technologies. An important part of TM systems is the matching algorithm that determines what translations get retrieved from the bank of available translations to assist the human translator. Although detailed accounts of the matching algorithms used in commercial systems can't be found in the literature, it is widely believed that edit distance algorithms are used. This paper investigates and evaluates the use of several matching algorithms, including the edit distance algorithm that is believed to be at the heart of most modern commercial TM systems. This paper presents results showing how well various matching algorithms correlate with human judgments of helpfulness (collected via crowdsourcing with Amazon's Mechanical Turk). A new algorithm based on weighted n-gram precision that can be adjusted for translator length preferences consistently returns translations judged to be most helpful by translators for multiple domains and language pairs.Comment: 9 pages, 6 tables, 3 figures; appeared in Proceedings of the 14th Conference of the European Chapter of the Association for Computational Linguistics, April 201

    Web users' information retrieval methods and skills

    Get PDF
    When trying to locate information on the Web people are faced with a variety of options. This research reviewed how a group of health related professionals approached the task of finding a named document. Most were eventually successful, but the majority encountered problems in their search techniques. Even experienced Web users had problems when working with a different interface to normal, and without access to their favourites. No relationship was found between the number of years' experience Web users had and the efficiency of their searching strategy. The research concludes that if people are to be able to use the Web quickly and efficiently as an effective information retrieval tool, as opposed to a recreational tool to surf the Internet, they need to have both an understanding of the medium and the tools, and the skills to use them effectively, both of which were lacking in the majority of participants in this study

    Examining and improving the effectiveness of relevance feedback for retrieval of scanned text documents

    Get PDF
    Important legacy paper documents are digitized and collected in online accessible archives. This enables the preservation, sharing, and significantly the searching of these documents. The text contents of these document images can be transcribed automatically using OCR systems and then stored in an information retrieval system. However, OCR systems make errors in character recognition which have previously been shown to impact on document retrieval behaviour. In particular relevance feedback query-expansion methods, which are often effective for improving electronic text retrieval, are observed to be less reliable for retrieval of scanned document images. Our experimental examination of the effects of character recognition errors on an ad hoc OCR retrieval task demonstrates that, while baseline information retrieval can remain relatively unaffected by transcription errors, relevance feedback via query expansion becomes highly unstable. This paper examines the reason for this behaviour, and introduces novel modifications to standard relevance feedback methods. These methods are shown experimentally to improve the effectiveness of relevance feedback for errorful OCR transcriptions. The new methods combine similar recognised character strings based on term collection frequency and a string edit-distance measure. The techniques are domain independent and make no use of external resources such as dictionaries or training data

    Deep Discrete Hashing with Self-supervised Pairwise Labels

    Full text link
    Hashing methods have been widely used for applications of large-scale image retrieval and classification. Non-deep hashing methods using handcrafted features have been significantly outperformed by deep hashing methods due to their better feature representation and end-to-end learning framework. However, the most striking successes in deep hashing have mostly involved discriminative models, which require labels. In this paper, we propose a novel unsupervised deep hashing method, named Deep Discrete Hashing (DDH), for large-scale image retrieval and classification. In the proposed framework, we address two main problems: 1) how to directly learn discrete binary codes? 2) how to equip the binary representation with the ability of accurate image retrieval and classification in an unsupervised way? We resolve these problems by introducing an intermediate variable and a loss function steering the learning process, which is based on the neighborhood structure in the original space. Experimental results on standard datasets (CIFAR-10, NUS-WIDE, and Oxford-17) demonstrate that our DDH significantly outperforms existing hashing methods by large margin in terms of~mAP for image retrieval and object recognition. Code is available at \url{https://github.com/htconquer/ddh}
    corecore