172,091 research outputs found
Modularità applicata all'elaborazione di pacchetti di rete: il linguaggio NetPDL
Questo articolo presenta NetPDL, un linguaggio basato su XML che permette di descrivere il formato delle intestazioni e l'imbustamento dei protocolli di rete e la sua implementazione nella libreria NetBe
Mutual learning in a tree parity machine and its application to cryptography
Mutual learning of a pair of tree parity machines with continuous and
discrete weight vectors is studied analytically. The analysis is based on a
mapping procedure that maps the mutual learning in tree parity machines onto
mutual learning in noisy perceptrons. The stationary solution of the mutual
learning in the case of continuous tree parity machines depends on the learning
rate where a phase transition from partial to full synchronization is observed.
In the discrete case the learning process is based on a finite increment and a
full synchronized state is achieved in a finite number of steps. The
synchronization of discrete parity machines is introduced in order to construct
an ephemeral key-exchange protocol. The dynamic learning of a third tree parity
machine (an attacker) that tries to imitate one of the two machines while the
two still update their weight vectors is also analyzed. In particular, the
synchronization times of the naive attacker and the flipping attacker recently
introduced in [1] are analyzed. All analytical results are found to be in good
agreement with simulation results
Discrete adjoint approximations with shocks
This paper is concerned with the formulation and discretisation of adjoint equations when there are shocks in the underlying solution to the original nonlinear hyperbolic p.d.e. For the model problem of a scalar unsteady one-dimensional p.d.e. with a convex flux function, it is shown that the analytic formulation of the adjoint equations requires the imposition of an interior boundary condition along any shock. A 'discrete adjoint' discretisation is defined by requiring the adjoint equations to give the same value for the linearised functional as a linearisation of the original nonlinear discretisation. It is demonstrated that convergence requires increasing numerical smoothing of any shocks. Without this, any consistent discretisation of the adjoint equations without the inclusion of the shock boundary condition may yield incorrect values for the adjoint solution
A search for periodicity in the light curves of selected blazars
We present an analysis of multifrequency light curves of the sources 2223-052
(3C 446), 2230+114 (CTA 102), and 2251+158 (3C 454.3), which had shown evidence
of quasi-periodic activity. The analysis made use of data from the University
of Michican Radio Astronomy Observatory (USA) at 4.8, 8, and 14.5 GHz, as well
as the Metsahovi Radio Astronomy Observatory (Finland) at 22 and 37 GHz.
Application of two different methods (the discrete autocorrelation function and
the method of Jurkevich) both revealed evidence for periodicity in the flux
variations of these sources at essentially all frequencies. The periods derived
for at least two of the sources -- 2223-052 and 2251+158-- are in good
agreement with the time interval between the appearance of successive VLBI
components. The derived periods for 2251+158 (P = 12.4 yr and 2223-052 (P = 5.8
yr) coincide with the periods found earlier by other authors based on optical
light curves.Comment: 27 pages, 11 figures, accepted for publication in Astronomy Report
Discrete rearranging disordered patterns, part I: Robust statistical tools in two or three dimensions
Discrete rearranging patterns include cellular patterns, for instance liquid
foams, biological tissues, grains in polycrystals; assemblies of particles such
as beads, granular materials, colloids, molecules, atoms; and interconnected
networks. Such a pattern can be described as a list of links between
neighbouring sites. Performing statistics on the links between neighbouring
sites yields average quantities (hereafter "tools") as the result of direct
measurements on images. These descriptive tools are flexible and suitable for
various problems where quantitative measurements are required, whether in two
or in three dimensions. Here, we present a coherent set of robust tools, in
three steps. First, we revisit the definitions of three existing tools based on
the texture matrix. Second, thanks to their more general definition, we embed
these three tools in a self-consistent formalism, which includes three
additional ones. Third, we show that the six tools together provide a direct
correspondence between a small scale, where they quantify the discrete
pattern's local distortion and rearrangements, and a large scale, where they
help describe a material as a continuous medium. This enables to formulate
elastic, plastic, fluid behaviours in a common, self-consistent modelling using
continuous mechanics. Experiments, simulations and models can be expressed in
the same language and directly compared. As an example, a companion paper
(Marmottant, Raufaste and Graner, joint paper) provides an application to foam
plasticity
The time evolution of permutations under random stirring
We consider permutations of obtained by
independent applications of random stirring. In each
step the same marked stirring element is transposed with probability with
any one of the elements. Normalizing by we describe the
asymptotic distribution of the cycle structure of these permutations, for all
, as .Comment: 15 page
- …
